分析 (1)利用相互獨立事件概率乘法公式能求出選手獲得5個學豆的概率.
(2)設甲“第一關闖關成功且所得學豆為零”為事件A,“第一關闖關成功第二關闖關失敗”為事件A1,“前兩關闖關成功第三關闖關失敗”為事件A2,則A1,A2互斥,由此能求出選手甲第一關闖關成功且所得學豆為零的概率.
解答 解:(1)選手獲得5個學豆的概率$P(X=5)=\frac{3}{4}×\frac{1}{2}=\frac{3}{8}$
(2)設甲“第一關闖關成功且所得學豆為零”為事件A,
“第一關闖關成功第二關闖關失敗”為事件A1,
“前兩關闖關成功第三關闖關失敗”為事件A2,則A1,A2互斥,
$P({A_1})=\frac{3}{4}×\frac{1}{2}×(1-\frac{2}{3})=\frac{1}{8}$,$P({A_2})=\frac{3}{4}×\frac{1}{2}×\frac{2}{3}×\frac{1}{2}×(1-\frac{1}{2})=\frac{1}{16}$,
∴選手甲第一關闖關成功且所得學豆為零的概率$P(A)=P({A_1})+P({A_2})=\frac{1}{8}+\frac{1}{16}=\frac{3}{16}$
點評 本題考查概率的求法,是中檔題,解題時要認真審題,注意相互獨立事件概率乘法公式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{1}{4}$) | B. | [$\frac{1}{4}$,1) | C. | ($\frac{1}{16}$,1) | D. | [$\frac{1}{16}$,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a1+a8=a4+a5 | B. | a1+a8<a4+a5 | ||
C. | a1+a8>a4+a5 | D. | a1+a8與a4+a5大小關系不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com