下面一組圖形為三棱錐PABC的底面與三個(gè)側(cè)面.已知ABBC,PAAB,PAAC.

 (1)在三棱錐PABC中,求證:平面ABC⊥平面PAB

(2)在三棱錐PABC中,MPA的中點(diǎn),且PABC=3,AB=4,求三棱錐PMBC的體積.

 

【答案】

 

解:(1)如圖,證明:∵PAAB,PAAC,

ABAC=A,∴PA⊥平面ABC,又∵PA⊂平面ABP

∴平面ABC⊥平面PAB --------------------6分

(2)∵PA=3,M是PA的中點(diǎn),∴MA=.

又∵AB=4,BC=3.∴VM-ABC=S△ABC·MA=××4×3×=3

又VP-ABC=S△ABC·PA=××4×3×3=6,∴VP-MBC=VP-ABC-VM-ABC==3. ------------12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、下面一組圖形為三棱錐P-ABC的底面與三個(gè)側(cè)面.已知AB⊥BC,PA⊥AB,PA⊥AC.
(1)寫出三棱錐P-ABC中的所有的線面垂直關(guān)系(不要求證明);
(2)在三棱錐P-ABC中,求證:平面ABC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省紅色六校高三第二次聯(lián)考文科數(shù)學(xué)試卷 題型:解答題

下面一組圖形為三棱錐PABC的底面與三個(gè)側(cè)面.已知ABBCPAAB,PAAC.

 

 

(1)在三棱錐PABC中,求證:平面ABC⊥平面PAB;

(2)在三棱錐PABC中,MPA的中點(diǎn),且PABC=3,AB=4,求三棱錐PMBC的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下面一組圖形為三棱錐P-ABC的底面與三個(gè)側(cè)面.已知AB⊥BC,PA⊥AB,PA⊥AC.
(1)寫出三棱錐P-ABC中的所有的線面垂直關(guān)系(不要求證明);
(2)在三棱錐P-ABC中,求證:平面ABC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):7.5 直線、平面垂直的判定及其性質(zhì)(解析版) 題型:解答題

下面一組圖形為三棱錐P-ABC的底面與三個(gè)側(cè)面.已知AB⊥BC,PA⊥AB,PA⊥AC.
(1)寫出三棱錐P-ABC中的所有的線面垂直關(guān)系(不要求證明);
(2)在三棱錐P-ABC中,求證:平面ABC⊥平面PAB.

查看答案和解析>>

同步練習(xí)冊(cè)答案