【題目】袋中裝有6個球,紅藍兩色各半,從袋中不放回取球次,每次取1個球.
(1)求下列事件的概率:
①事件:,取出的球同色;
②事件:,第次恰好將紅球全部取出;
(2)若第次恰好取到第一個紅球,求抽取次數(shù)的分布列和數(shù)學(xué)期望.
【答案】(1)①;②;(2)分布列見解析,.
【解析】
(1)①,基本事件總數(shù)n==15, 取出的球同色包含的基本事件個數(shù)m=2=6,由古典概型概率計算公式即可求得答案;
②,基本事件總數(shù)n=,第k次恰好將紅球全部取出包含的基本事件個數(shù)m=,由古典概型概率計算公式即可求得答案;
(2)的可能取值為1,2,3,4,分別計算概率并列出分布列,再由數(shù)學(xué)期望計算公式即可求得答案.
(1)袋中裝有6個球,紅藍兩色各半,從袋中不放回取球k (1≤k≤6, k∈Z)次,每次取1個球.
①k=2,基本事件總數(shù)n==15,
事件A:k=2,取出的球同色包含的基本事件個數(shù)m=2=6,
所以事件A的概率
②k=5,基本事件總數(shù)n=
事件B:k=5,第k次恰好將紅球全部取出包含的基本事件個數(shù)m=
所以事件B的概率
(2)的可能取值為1,2,3,4
,
∴的分布列為
1 | 2 | 3 | 4 | |
∴
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.
(1)求證:四邊形ACC1A1為矩形;
(2)求二面角E-B1C-A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且是以為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于.問:是否存在過點的平面分別交,于點,使得平面平面?若存在,求出的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為正實數(shù).
(1)若不等式恒成立,求實數(shù)的取值范圍;
(2)當(dāng)時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,左右焦點分別為,,離心率為,右焦點到右頂點的距離為1.
(1)求橢圓的方程;
(2)過 的直線與橢圓交于不同的兩點,,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點,交曲線于,兩點,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線圍成的各區(qū)域上分別且只能標(biāo)記數(shù)字1,2,3,4,相鄰區(qū)域標(biāo)記的數(shù)字不同,其中,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在圖上隨機取一點,則該點恰好取自標(biāo)記為1的區(qū)域的概率所有可能值中,最大的是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com