已知點(diǎn)F(,0),直線(xiàn)l:x=-,點(diǎn)B是l上的動(dòng)點(diǎn).若過(guò)B垂直于y軸的直線(xiàn)與線(xiàn)段BF的垂直平分線(xiàn)交于點(diǎn)M,則點(diǎn)M的軌跡是
[     ]
A.雙曲線(xiàn)
B.橢圓
C.圓
D.拋物線(xiàn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直四棱柱ABCD-A1B1C1D1的底面是菱形,AC∩BD=0,AB=2,∠ABC=60°,E,F(xiàn)分別為棱BB1,CC1上的點(diǎn),EC=BC=2FB,M是AE的中點(diǎn).
(1)求證FM∥BO
(2)求平面AEF與平面ABCD所成銳二面角的大小.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知直四棱柱ABCD-A1B1C1D1的底面是菱形AC∩BD=0,AB=2,∠ABC=60°,E、F分別為棱CC1,BB1上的點(diǎn),EC=BC=2FB,M是AE的中點(diǎn).
(1) 求證:FM∥BO(2) 求三棱錐E-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P與直x=4的距離等于它到定點(diǎn)F(1,0)的距離的2倍,
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(1,1)在所求軌跡內(nèi),且過(guò)點(diǎn)M的直線(xiàn)與曲線(xiàn)C交于A、B,當(dāng)M是線(xiàn)段AB中點(diǎn)時(shí),求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函f(x)=e2+ax,g(x)=exlnx
(1)設(shè)曲線(xiàn)y=f(x)在x=1處得切線(xiàn)與直x+(e-1)y=1垂直,求a的值.
(2)若對(duì)任意實(shí)x≥0f(x)>0恒成立,確定實(shí)數(shù)a的取值范圍.
(3)a=1時(shí),是否存x0∈[1,e],使曲線(xiàn)C:y=g(x)-f(x)在點(diǎn)x=x0處得切線(xiàn)與y軸垂直?若存在求x0的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省教育考試院高考測(cè)試樣卷(理) 題型:解答題

   已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn), 焦點(diǎn)為F(0, 1).

(Ⅰ) 求拋物線(xiàn)C的方程;

(Ⅱ) 在拋物線(xiàn)C上是否存在點(diǎn)P, 使得過(guò)點(diǎn)P的直

線(xiàn)交C于另一點(diǎn)Q, 滿(mǎn)足PF⊥QF, 且PQ與C

在點(diǎn)P處的切線(xiàn)垂直? 若存在, 求出點(diǎn)P的坐標(biāo);

若不存在, 請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案