【題目】如圖,已知在算法中分別表示取商和取余數(shù).為了驗證三位數(shù)卡普雷卡爾數(shù)字黑洞(即輸入一個無重復數(shù)字的三位數(shù),經(jīng)過如圖的有限次的重排求差計算,結(jié)果都為495.小明輸入,則輸出的

A.3B.4C.5D.6

【答案】B

【解析】

首先讀懂程序,輸入任意一個無重復數(shù)字的三位數(shù),將其個位,十位,百位重新排列,組成一個最大數(shù)和一個最小數(shù),寫出每次循環(huán)的結(jié)果,使差是495結(jié)束循環(huán),即可得出答案.

先讀懂程序:輸入任意一個無重復數(shù)字的三位數(shù),

將其個位,十位,百位重新排列,組成一個最大數(shù)和一個最小數(shù),

然后作差,若差不為495,則繼續(xù)此過程,經(jīng)過有限次步驟之后,最后結(jié)果一定是495.

對于輸入的325,第一次循環(huán):

重新排列后,最大數(shù)為532,最小數(shù)為235,相減得297,然后;

第二次循環(huán):重新排列后,最大數(shù)為972,最小數(shù)為279,相減得693,然后

第三次循環(huán):重新排列后,最大數(shù)為963,最小數(shù)為369,相減得594,然后;

第四次循環(huán):重新排列后,最大數(shù)為954,最小數(shù)為459,相減得495,然后,

結(jié)束循環(huán),

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設有編號分別為1,2,3,4,5,6,7,8的八個小球和編號為1,2,3,4,5,67,8的八個盒子.現(xiàn)將這八個小球隨機放入八個盒子內(nèi),要求每個盒子內(nèi)放一個球,要求編號為偶數(shù)的小球在編號為偶數(shù)的盒子內(nèi),且至少有四個小球在相同編號的盒子內(nèi),則一共有______種投放方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心為,左、右焦點分別為、,上頂點為,右頂點為,且、、成等比數(shù)列.

1)求橢圓的離心率;

2)判斷的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,設成立; 成立. 如果“”為真,“”為假,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在算法中分別表示取商和取余數(shù).為了驗證三位數(shù)卡普雷卡爾數(shù)字黑洞(即輸入一個無重復數(shù)字的三位數(shù),經(jīng)過如圖的有限次的重排求差計算,結(jié)果都為495.小明輸入,則輸出的

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,在中,,的中點,四邊形是等腰梯形,

(Ⅰ)求異面直線所成角的正弦值;

(Ⅱ)求證:平面平面

(Ⅲ)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,且過點

1)求C的方程;

2)若直線lC有且只有一個公共點,l與圓x2+y26交于A,B兩點,直線OA,OB的斜率分別記為k1k2.試判斷k1k2是否為定值,若是,求出該定值;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADBC,ABACAD3,PABC4.

1)求異面直線PBCD所成角的余弦值;

2)求平面PAD與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點 , 分別為橢圓的右頂點、上頂點和右焦點,且

(1)求橢圓的方程;

(2)已知直線 被圓 所截得的弦長為,若直線與橢圓交于, 兩點,求面積的最大值.

查看答案和解析>>

同步練習冊答案