已知圓C:(x-1)2+(y+2)2=r2被直線L:3x+4y-5=0截得的劣弧的弧長為
π
3
r,則圓C的半徑r為
 
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:由題意可得弦長所對的圓心角等于
π
3
,求得弦心距d,再根據(jù)cos
π
6
=
d
r
=
3
2
,求得r的值.
解答: 解:∵圓C:(x-1)2+(y+2)2=r2被直線L:3x+4y-5=0截得的劣弧的弧長為
π
3
r,
故弦長所對的圓心角等于
π
3

∴弦心距d=
|3-8-5|
9+16
=2,
∵cos
π
6
=
d
r
=
3
2
,
∴r=
4
3
3
,
故答案為:
4
3
3
點評:本題主要考查直線和圓相交的性質(zhì),直角三角形中的邊角關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將直線2x-y-2=0繞著其與x軸的交點逆時針旋轉(zhuǎn)
π
4
后得到直線l,則直線l被圓x2+y2=1所截得的弦長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機變量X的分布列為P(X=k)=2λk(k=1,2,3…,n,…),則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
3-i
1+i
(i是虛數(shù)單位),則z的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
3
)log34
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x2+y2≤1
x+y≤1
y≥0
,則z=x-y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點A(2,5)到直線l:x-2y+3=0的距離為(  )
A、2
5
B、
5
5
C、
5
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,不等式組
x≥0
y≥0
x+y-8≤0
所表示的平面區(qū)域是α,不等式組所表示的平面區(qū)域是
0≤x≤4
0≤y≤10
所表示的平面區(qū)域是β.從區(qū)域α中隨機取一點P(x,y),則P為區(qū)域β內(nèi)的點的概率是( 。
A、
1
4
B、
3
5
C、
3
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知[x]表示不超過實數(shù)x的最大整數(shù)(x∈R),如:[-1,3]=-2,[0,8]=0,[3,4]=3.定義{x}=x-[x],給出如下命題:
①使[x+1]=3成立的x的取值范圍是2≤x<3;
②函數(shù)y={x}的定義域為R,值域為[0,1];
③{
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=1007;
④設(shè)函數(shù)f(x)=
x-[x]    x≥0
f(x+1),x<0
,則函數(shù)y=f(x)-
1
4
x-
1
4
的不同零點有3個.
其中正確的命題有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案