【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,已知cos2C= .
(1)求sinC的值;
(2)當(dāng)a=2,2sinA=sinC時,求b及c的長.
【答案】
(1)解:因為cos2C=1﹣2sin2C= ,及0<C<π
所以 sinC= .
(2)解:當(dāng)a=2,2sinA=sinC時,由正弦定理 = ,解得c=4.
由cos2C=2cos2C﹣1= ,及0<C<π 得cosC=± .
由余弦定理 c2=a2+b2﹣2abcosC,得b2± b﹣12=0,
解得b= 或b=2 .
所以b= 或b=2 ,c=4.
【解析】(1)注意角的范圍,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出邊長c,由二倍角公式求cosC,用余弦定理解方程求邊長b.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M={(x,y)|=3},N={(x,y)|ax+2y+a=0}且M∩N=,則a=( 。
A.﹣6或﹣2
B.﹣6
C.2或﹣6
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時,f(x)=2x .
(1)求f(log2 )的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:=1(a>b>0)的焦距為2 , 且該橢圓經(jīng)過點(,).
(Ⅰ)求橢圓E的方程;
(Ⅱ)經(jīng)過點P(﹣2,0)分別作斜率為k1 , k2的兩條直線,兩直線分別與橢圓E交于M,N兩點,當(dāng)直線MN與y軸垂直時,求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某商店一個月內(nèi)每天的顧客人數(shù)進行統(tǒng)計,得到樣本的莖葉圖(如圖所示).則該樣本的中位數(shù)、眾數(shù)、極差分別是( 。
A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項的和記為Sn . 如果a4=﹣12,a8=﹣4.
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最小值及其相應(yīng)的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: 的離心率,短軸右端點為, 為線段的中點.
(Ⅰ) 求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓相交于兩點,試探究在軸上是否存在定點,使得,若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工某零件所花費的時間,為此做了四次實驗,得到的數(shù)據(jù)如表:
零件的個數(shù)x(個) | 2 | 3 | 4 | 5 |
加工的時間y(小時) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程y= x+ ,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工6個零件需要多少時間?
(注: = , = ﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點為橢圓上一點,直線的方程為,求證:直線與橢圓有且只有一個交點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com