已知函數(shù)f(x)=ax2-2ax+2+b(a>0),在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值.
(2)若g(x)=f(x)-|m-1|x在[2,3]上單調(diào),求實數(shù)m的取值范圍.
分析:(1)依題意可得到關(guān)于a,b的方程組
9a-6a+2+b=5
4a-4a+2+b=2
,解之即可;
(2)由(1)可得f(x)的解析式,從而可得g(x)的解析式,利用二次函數(shù)的單調(diào)性即可求得實數(shù)m的取值范圍.
解答:解:(1)f(x)=a(x-1)2+2+b-a的對稱軸方程為x=1,又a>0,所以f(x)在[2,3]上為增函數(shù),
f(3)=2
f(2)=5
,即
9a-6a+2+b=5
4a-4a+2+b=2
,
解得:
a=1
b=0

(2)由(1)得f(x)=x2-2x+2,
∴g(x)=x2-2x+2-|m-1|x
=x2-(2+|m-1|)x+2,
∵g(x)=x2-(2+|m-1|)x+2在[2,3]上單調(diào),
2+|m-1|
2
≤2,或
2+|m-1|
2
≥3,
∴|m-1|≤2或|m-1|≥6,
即m≤-5,或-1≤m≤3,或m≥7.
點評:本題考查二次函數(shù)在閉區(qū)間上的最值,考查解方程組與不等式組的能力,考查二次函數(shù)的單調(diào)性與最值及分類討論思想、方程思想的綜合應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案