14.已知△ABC在斜二測(cè)畫法下的平面直觀圖△A'B'C',△A'B'C'是邊長(zhǎng)為a的正三角形,那么在原△ABC的面積為( 。
A.$\frac{{\sqrt{3}}}{2}{a^2}$B.$\frac{{\sqrt{3}}}{4}{a^2}$C.$\frac{{\sqrt{6}}}{2}{a^2}$D.$\sqrt{6}{a^2}$

分析 由原圖和直觀圖面積之間的關(guān)系系$\frac{{S}_{直觀圖}}{{S}_{原圖}}$=$\frac{\sqrt{2}}{4}$,求出直觀圖三角形的面積,再求原圖的面積即可.

解答 解:直觀圖△A′B′C′是邊長(zhǎng)為a的正三角形,故面積為$\frac{\sqrt{3}}{4}{a}^{2}$,
而原圖和直觀圖面積之間的關(guān)系$\frac{{S}_{直觀圖}}{{S}_{原圖}}$=$\frac{\sqrt{2}}{4}$,
那么原△ABC的面積為:$\frac{\sqrt{6}}{2}{a}^{2}$,
故選C.

點(diǎn)評(píng) 本題考查斜二測(cè)畫法中原圖和直觀圖面積之間的關(guān)系,屬基本運(yùn)算的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.對(duì)于正整數(shù)k,記g(k)表示k的最大奇數(shù)因數(shù).例如:g(1)=1,g(2)=1,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+…+g(2n
給出下列四個(gè)結(jié)論:
①g(3)+g(4)=10
②?m∈N*,都有g(shù)(2m)=g(m)
③S1+S2+S3=30
④Sn-Sn-1=4n-1,n≥2,n∈N*
則以上結(jié)論正確有②③④.(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(-1,-2).
(1)求$\overrightarrow{a}$,$\overrightarrow$的夾角的余弦值;
(2)若向量$\overrightarrow{a}$-λ$\overrightarrow$與2$\overrightarrow{a}$+$\overrightarrow$垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}(x+1)|,-1<x<1}\\{cos\frac{π}{3}x,1≤x≤6}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$的取值范圍是( 。
A.(0,4)B.(0,$\frac{7}{4}$)C.($\frac{1}{2}$,$\frac{9}{4}$)D.($\frac{1}{4}$,$\frac{7}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.定義在正實(shí)數(shù)集上的函數(shù)f(x)滿足:f(3x)=3f(x),且1≤x≤3時(shí)f(x)=1-|x-2|,若f(x)=f(2017),
則最小的實(shí)數(shù)x為413.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锳,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個(gè)等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)y=f(x)的一個(gè)等值域變換?說(shuō)明你的理由;
①$f(x)={log_2}x,x>0,x=g(t)=t+\frac{1}{t},t>0$;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R.
(2)設(shè)f(x)=log2x的定義域?yàn)閤∈[2,8],已知$x=g(t)=\frac{{m{t^2}-3t+n}}{{{t^2}+1}}$是y=f(x)的一個(gè)等值域變換,且函數(shù)y=f[g(t)]的定義域?yàn)镽,求實(shí)數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.計(jì)算lg4+lg500-lg2=3,$(\frac{1}{27})^{-\frac{1}{3}}$+(log316)•(log2$\frac{1}{9}$)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行下面的程序框圖,則輸出的k值為(  )
A.-1B.4C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,為偶函數(shù)的是( 。
A.y=log2xB.$y={x^{\frac{1}{2}}}$C.y=2-xD.y=x-2

查看答案和解析>>

同步練習(xí)冊(cè)答案