分析 (1)由a1+3a2+32a3+…+3n-1an=$\frac{n}{3}$⇒當(dāng)n≥2時,a1+3a2+32a3+…+3n-2an-1=$\frac{n-1}{3}$,兩式作差求出數(shù)列{an}的通項;
(2)由(1)的結(jié)論可知數(shù)列{bn}的通項.再用錯位相減法求和即可.
解答 解:(1)∵a1+3a2+32a3+…+3n-1an=$\frac{n}{3}$,①
∴當(dāng)n≥2時,a1+3a2+32a3+…+3n-2an-1=$\frac{n-1}{3}$.②
①-②,得3n-1an=$\frac{1}{3}$,
所以an=$\frac{1}{{3}^{n}}$(n≥2),
在①中,令n=1,得a1=$\frac{1}{3}$也滿足上式.
∴an=$\frac{1}{{3}^{n}}$(n∈N*);
(2)∵bn=$\frac{n}{{a}_{n}}$,
∴bn=n•3n.
∴Sn=3+2×32+3×33+…+n•3n.③
∴3Sn=32+2×33+3×34+…+n•3n+1.④
④-③,得2Sn=n•3n+1-(3+32+33+…+3n),
即2Sn=n•3n+1-$\frac{3(1-{3}^{n})}{1-3}$,
∴Sn=$\frac{(2n-1)•{3}^{n+1}}{4}$+$\frac{3}{4}$.
點評 本題考查了數(shù)列的通項的求法和求和方法:錯位相減法.錯位相減法適用于通項為一等差數(shù)列乘一等比數(shù)列組成的新數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $-\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,2] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | c<a<b | C. | b<c<a | D. | a<b<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com