設(shè)
分別是橢圓的
左,右焦點。
(Ⅰ)若
是第一象限內(nèi)該橢圓上的一點,且
,求點
的坐標。
(Ⅱ)設(shè)過定點
的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標原點),求直線
的斜率
的取值范圍。
(Ⅰ)
(Ⅱ)
試題分析:(Ⅰ)易知
。
則
,
聯(lián)立
,解得
,
(Ⅱ)顯然
可設(shè)
聯(lián)立
由
得
①
又
,
又
②
綜①②可知
點評:直線與橢圓相交時常聯(lián)立方程,利用韋達定理轉(zhuǎn)化較簡單,條件中將
轉(zhuǎn)化為向量表示,進而與A,B坐標聯(lián)系起來,即可利用韋達定理
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的頂點為
,焦點為
,
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n 為過原點的直線,
是與n垂直相交于P點,與橢圓相交于A, B兩點的直線,
.是否存在上述直線
使
成立?若存在,求出直線
的方程;并說出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標系
中,點
到兩點
,
的距離之和為
,設(shè)點
的軌跡為曲線
.
(1)寫出
的方程;
(2)設(shè)過點
的斜率為
(
)的直線
與曲線
交于不同的兩點
,
,點
在
軸上,且
,求點
縱坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點
P是雙曲線
C:
左支上一點,
F1,
F2是雙曲線的左、右兩個焦點,且
PF1⊥
PF2,
PF2與兩條漸近線相交于
M,N兩點(如圖),點
N恰好平分線段
PF2,則雙曲線的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過雙曲線
(
)的右焦點
作圓
的切線
,交
軸于點
,切圓于點
,若
,則雙曲線的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
,
)的圖象恒過定點
,橢圓
:
(
)的左,右焦點分別為
,
,直線
經(jīng)過點
且與⊙
:
相切.
(1)求直線
的方程;
(2)若直線
經(jīng)過點
并與橢圓
在
軸上方的交點為
,且
,求
內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的一條漸近線方程是y=
,它的一個焦點在拋物線
的準線上,則雙曲線的方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在橢圓
上找一點,使這一點到直線
的距離為最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若點
在以點
為焦點的拋物線
上,則
等于__________
查看答案和解析>>