【題目】某社區(qū)為豐富居民節(jié)日活動,組織了“迎新春”象棋大賽,已知報名的選手情況統(tǒng)計如下表:

組別

總計

中年組

91

老年組

16

已知中年組女性選手人數(shù)是僅比老年組女性選手人數(shù)多2人,若對中年組和老年組分別利用分層抽樣的方法抽取部分報名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.

(1)求表格中的數(shù)據(jù);

(2)若從選出的中年組的選手中隨機抽取兩名進行比賽,求至少有一名女性選手的概率.

【答案】見解析

【解析】試題分析:Ⅰ)由題意,老年組中,女性抽取了3人,則男性抽取了2人,利用分層抽樣的比例,即可求解的值;

Ⅱ)由已知得中年組抽取男性人;女性2人,列舉出基本事件的個數(shù),利用古典概型的概率計算公式,即可求解至少有一名女性的概率.

試題解析:

Ⅰ)由題意,老年組中,女性抽取了3人,則男性抽取了2人,故抽樣比為

所以

所以,

Ⅱ)由已知,中年組共抽取了7人,所以抽樣比為

所以中年組抽取男性人;女性2人.

5名男性分別為,2名女性分別為

則從中隨機選取兩名,不同的結(jié)果為:

,,,,,

,,,,,

,,

,,

,

21種.

其中至少有一名女性的選法為:,,,,,,,.共11種.

所以至少有一名女性的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F分別是PA,PC的中點.

(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;

(2)設(shè)AB=PC=2,BC=1,求三棱錐P-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中,a1=1且a1 , a3 , a9成等比數(shù)列, (Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設(shè)bn=n2 求數(shù)列[bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

)求數(shù)的最小正周期和對稱軸方程.

)銳角的三個頂點, , 所對邊分別為 , ,若, ,求及邊

)若中, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是奇函數(shù)并且是R上的單調(diào)函數(shù),若函數(shù)y=f(2x2+1)+f(λ﹣x)只有一個零點,則實數(shù)λ的值是(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某公司的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當天賣不完,剩下的面包以1元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如圖所示.食堂某天購進了 90個面包,以 (個)(其中)表示面包的需求量, (元)表示利潤.

(1)根據(jù)直方圖計算需求量的中位數(shù);

(2)估計利潤不少于100元的概率;

(3)在直方圖的需求量分組中,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F(xiàn)為左焦點,原點O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設(shè)b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得2分;方案乙的中獎率為P0(0<P0<1),中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品. (Ⅰ)張三選擇方案甲抽獎,李四選擇方案乙抽獎,記他們的累計得分為X,若X≤3的概率為 ,求P0
(Ⅱ)若張三、李四兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝著標有數(shù)字1、2、3、4、5的小球各2個,從袋中任取3個小球,每個小球被取出的可能性都相等,用ξ表示取出的3個小球上的最大數(shù)字,求:
(1)取出的3個小球上的數(shù)字互不相同的概率;
(2)隨機變量ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案