【題目】如圖,已知梯形中, , ,四邊形為矩形, ,平面平面

(Ⅰ)求證: 平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值;

(Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析(2)(3)

【解析】試題分析:(1)利用空間向量證明線面平行,一般轉(zhuǎn)化為對(duì)應(yīng)平面法向量與直線垂直,先建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解出平面法向量,根據(jù)向量數(shù)量積證明垂直,最后根據(jù)線面平行判定定理證明,(2)求二面角,一般利用空間向量進(jìn)行求解,先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解出各面法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角之間相等或互補(bǔ)

關(guān)系求解(3)研究線面角,一般利用空間向量進(jìn)行列式求解參數(shù),先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解出各面法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)線面角與向量夾角之間互余關(guān)系列式求解參數(shù).

試題解析:(Ⅰ)證明:取為原點(diǎn), 所在直線為軸, 所在直線為軸建立空間直角坐標(biāo)系,如圖,則, , ,

,

設(shè)平面的法向量,

不妨設(shè)

,

,

又∵平面

平面

(Ⅱ)解:∵,

設(shè)平面的法向量,

不妨設(shè),

∴平面與平面所成銳二面角的余弦值為

(Ⅲ)設(shè) ,

,

又∵平面的法向量,

,

當(dāng)時(shí), ,∴

當(dāng)時(shí), ,∴

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.

(1)求拋物線的方程;

(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

組號(hào)

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位將舉辦慶典活動(dòng),要在廣場(chǎng)上豎立一形狀為等腰梯形的彩門(mén)BADC (如圖),設(shè)計(jì)要求彩門(mén)的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門(mén)的下底BC固定在廣場(chǎng)地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長(zhǎng)度和記為l.
(1)請(qǐng)將l表示成關(guān)于α的函數(shù)l=f(α);
(2)問(wèn)當(dāng)α為何值時(shí)l最?并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,.

1)證明: A1BD // 平面CD1B1;

2)求三棱柱ABDA1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.

(1)求{an}的通項(xiàng)公式.

(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問(wèn):b6與數(shù)列{an}的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí), 的內(nèi)心的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)消防安全意識(shí),某中學(xué)對(duì)全體學(xué)生做了一次消防知識(shí)講座,從男生中隨機(jī)抽取50人,從女生中隨機(jī)抽取70人參加消防知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

15

35

50

女生

30

40

70

總計(jì)

45

75

120

(Ⅰ)試判斷是否有的把握認(rèn)為消防知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);

附:

K2=

(Ⅱ)為了宣傳消防安全知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組,現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案