設(shè)數(shù)列{an}是一個(gè)公差為的等差數(shù)列,已知它的前10項(xiàng)和為,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和Tn

(1)(2)Tn

解析試題分析:(1)由等差數(shù)列的求和公式代入已知條件可得d的值,進(jìn)而可得a1的值,可得通項(xiàng)公式;(2)可得,裂項(xiàng)相消法可得其和.
試題解析:(1)設(shè)數(shù)列{an}的前項(xiàng)和為
∵S10 = 110,∴
.①
∵a1,a2,a4 成等比數(shù)列,
,即.∴
∵d ¹ 0,∴a1 = d.②
由①,②解得,∴. 
(2)∵=,
.  
 .   
考點(diǎn):等差數(shù)列的通項(xiàng)公式和求和公式,裂項(xiàng)相消法求數(shù)列的和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列的前項(xiàng)和為,公比,已知.
(1)求數(shù)列的通項(xiàng)公式;
(2)若分別為等差數(shù)列的第4項(xiàng)和第16項(xiàng),試求數(shù)列的通項(xiàng)公式及前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公差不為0的等差數(shù)列滿足,,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和;(Ⅲ)設(shè),若數(shù)列是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,,.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且,令.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)若,點(diǎn)在函數(shù)的圖象上,求數(shù)列的前項(xiàng)和
(2)若,學(xué)科網(wǎng)函數(shù)的圖象在點(diǎn)處的切線在軸上的截距為,求數(shù)列的前 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足:,(≥3),記
(≥3).
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),數(shù)列{}的前n項(xiàng)和為,求證:<<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an
(2)設(shè)Sn為{an}的前n項(xiàng)和,求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2012•廣東)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有

查看答案和解析>>

同步練習(xí)冊答案