設(shè)數(shù)列{an}的前n項和為Sn,且數(shù)學(xué)公式,n=1,2,3…
(1)求a1,a2;
(2)求Sn與Sn-1(n≥2)的關(guān)系式,并證明數(shù)列{數(shù)學(xué)公式}是等差數(shù)列;
(3)求S1•S2•S3…S2011•S2012的值.

(1)解:當(dāng)n=1時,由已知得,解得
同理,可解得 …(4分)
(2)證明:由題設(shè)
當(dāng)n≥2時,an=Sn-Sn-1
代入上式,得SnSn-1-2Sn+1=0
,∴=-1+
∴{}是首項為=-2,公差為-1的等差數(shù)列 …(9分)
=-2+(n-1)•(-1)=-n-1
∴Sn= …(11分)
(3)解:S1•S2•S3…S2011•S2012=…•= (13分)
分析:(1)n分別取1,2,代入計算,可求a1,a2;
(2)當(dāng)n≥2時,an=Sn-Sn-1,代入條件,即可證得數(shù)列{}是等差數(shù)列;
(3)根據(jù)(2)的結(jié)論,利用點疊乘法,即可得到結(jié)論.
點評:本題考查數(shù)列遞推式,考查等差數(shù)列的證明,考查疊乘法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊答案