精英家教網 > 高中數學 > 題目詳情
已知圓C:x2+y2-2x+4y-4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程,若不存在說明理由.
【答案】分析:將圓C化成標準方程,假設存在以AB為直徑的圓M,圓心M的坐標為(a,b).因為CM⊥l,則有kCM•kl=-1,表示出直線l的方程,從而求得圓心到直線的距離,再由:求解.
解答:解:圓C化成標準方程為(x-1)2+(y+2)2=9,假設存在以AB為直徑的圓M,圓心M的坐標為(a,b).
∵CM⊥l,即kCM•kl=×1=-1
∴b=-a-1
∴直線l的方程為y-b=x-a,即x-y-2a-1=0
∴|CM|2=(2=2(1-a)2
∴|MB|2=|CB|2-|CM|2=-2a2+4a+7
∵|MB|=|OM|
∴-2a2+4a+7=a2+b2,得a=-1或,b=2
當a=時,b=-,此時直線l的方程為x-y-4=0
當a=-1時,b=0,此時直線l的方程為x-y+1=0
故這樣的直線l是存在的,方程為x-y-4=0或x-y+1=0.
點評:本題主要考查直線與圓的位置關系其其方程的應用,本題是一道探究題,出題新穎,體現知識的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數.射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數的點為有理點.我們知道,一個有理數可以表示為
qp
,其中p、q均為整數且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數的點),那么直線l共有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習冊答案