精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,a,b,c分別是∠A,∠B,∠C的對邊.若(a+b﹣c)(a+b+c)=ab,c= ,當ab取得最大值時,SABC=

【答案】
【解析】解:∵(a+b﹣c)(a+b+c)=ab,c= , ∴(a+b)2﹣c2=ab,可得:a2+b2=c2﹣ab=3﹣ab,
∵a2+b2≥2ab,當且僅當a=b時取等號,
∴3﹣ab≥2ab,即:ab≤1,當且僅當a=b時取等號,
∴當ab取得最大值時,a=b=1,可得:cosC= =﹣ ,sinC= = ,
可得:SABC= absinC= =
所以答案是:
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點分別為F1 , F2 , O為坐標原點,點P是雙曲線在第一象限內的點,直線PO,PF2分別交雙曲線C的左、右支于另一點M,N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x+ax2+bcosx在點 處的切線方程為
(Ⅰ)求a,b的值,并討論f(x)在 上的增減性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求證:
(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(1,0),若點B是曲線y=f(x)上的點,且線段AB的中點在曲線y=g(x)上,則稱點B是函數y=f(x)關于函數g(x)的一個“關聯(lián)點”,已知f(x)=|log2x|,g(x)=( x , 則函數f(x)關于函數g(x)的“關聯(lián)點”的個數是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=(lnx)ln(1﹣x).
(1)求函數y=f(x)的圖象在( ,f( ))處的切線方程;
(2)求函數y=f′(x)的零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足nan+2﹣(n+2)an=λ(n2+2n),其中a1=1,a2=2,若an<an+1n∈N*恒成立,則實數λ的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在邊長為 的正方形ABCD中,E、O分別為 AD、BC的中點,沿 EO將矩形ABOE折起使得∠BOC=120°,如圖2所示,點G 在BC上,BG=2GC,M、N分別為AB、EG中點.
(Ⅰ)求證:MN∥平面OBC;
(Ⅱ)求二面角 G﹣ME﹣B的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F(2,0),點P(2, )在橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F的直線,交橢圓C于A、B兩點,點M在橢圓C上,坐標原點O恰為△ABM的重心,求直線l的方程.

查看答案和解析>>

同步練習冊答案