已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,又知α∩β=m,且n?α,n?β,則“n∥m”是“n∥α且n∥β”的


  1. A.
    必要不充分條件
  2. B.
    充分不必要條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
C
分析:α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,由α∩β=m,且n?α,n?β,知“n∥m”?“n∥α且n∥β”.
解答:α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,
∵α∩β=m,且n?α,n?β,
∴“n∥m”?“n∥α且n∥β”.
故選C.
點(diǎn)評:本題考查平面的基本性質(zhì)及其推導(dǎo),是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是兩個(gè)不同的點(diǎn),m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,給出下列4個(gè)命題:
①若m∩n=A,A∈α,B∈m,則B∈α;
②若m?α,A∈m,則A∈α;
③若m?α,m⊥β,則α⊥β;
④若m?α,n?β,m∥n,則α∥β,
其中真命題為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是兩個(gè)不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,m⊥β⇒α⊥β;④m?α,n?β,m∥n⇒α∥β.其中真命題為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知A、B是兩個(gè)不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知A,B是兩個(gè)不同的點(diǎn),m,n是兩條不重合的直線,,是兩個(gè)不重合的平面,給出下列4個(gè)命題:①若,,,則;②若,則;③若,,則;④若,,,則,其中真命題為(   )

A.①③             B.①④             C.②③             D.②④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省六安市霍邱一中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知A、B是兩個(gè)不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊答案