設
zn=(
)
n,(
n∈N
*),記
Sn=|
z2-
z1|+|
z3-
z2|+…+|
zn+1-
zn|,則
Sn=_________
1+
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在數(shù)列
中,
,
.
(1)求數(shù)列
的前
項和
;(2)證明不等式
,對任意
皆成立。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2
(Ⅰ)設bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列
(Ⅱ)求數(shù)列{an}的通項公式.
(Ⅲ)設cn=2nbn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設數(shù)列{a
n}是有窮等差數(shù)列,給出下面數(shù)表:
a
1 a
2a
3 …a
n-1 a
n第1行
a
1+a
2 a
2+a
3 …a
n-1+a
n 第2行
…
…
…第n行
上表共有n行,其中第1行的n個數(shù)為a
1,a
2,a
3…a
n,從第二行起,每行中的每一個數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b
1,b
2,b
3…b
n.
(1)求證:數(shù)列b
1,b
2,b
3…b
n成等比數(shù)列;
(2)若a
k=2k-1(k=1,2,…,n),求和
n |
|
k=1 |
akbk.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列{a
n}的前n項和
Sn=2n2-3n,而a
1,a
3,a
5,a
7,組成一新數(shù)列{b
n},則數(shù)列{b
n}的前n項和為
( )
A.Tn=2n2-n | B.Tn=4n2+3n | C.Tn=2n2-3n | D.Tn=4n2-5n |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的前
項和
,
(1)求
的值。 (2)求
的表達式
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等比數(shù)列
的首項
,公比
是最小的正整數(shù),則數(shù)列
的前
項的和為
A
B
C
D
查看答案和解析>>