(本小題分A,B類,滿分12分,任選一類,若兩類都選,以A類記分)
(A類)已知函數(shù)的圖象恒過定點(diǎn),且點(diǎn)又在函
數(shù)的圖象.
(1)求實(shí)數(shù)的值; (2)解不等式;
(3)有兩個(gè)不等實(shí)根時(shí),求的取值范圍.
(B類)設(shè)是定義在上的函數(shù),對任意,恒有
.
⑴求的值; ⑵求證:為奇函數(shù);
⑶若函數(shù)是上的增函數(shù),已知且,求的
取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年廣東省廣州市高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分14分)
某工廠生產(chǎn)A、B型兩類產(chǎn)品,每個(gè)產(chǎn)品需粗加工和精加工兩道工序完成. 已知粗加工做一個(gè)A、B型產(chǎn)品分別需要1小時(shí)和2小時(shí),精加工一個(gè)A、B型產(chǎn)品分別需要3小時(shí)和1小時(shí);又知粗加工、精加工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠生產(chǎn)一個(gè)A、B型產(chǎn)品分別獲利潤200元和300元,試問工廠每天應(yīng)生產(chǎn)A、B型產(chǎn)品各多少個(gè),才能獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省皖南八校高三第一次聯(lián)考文科數(shù)學(xué)試卷解析版 題型:解答題
(本小題滿分12分)某汽車廠生產(chǎn)A、B兩類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種,某月的產(chǎn)量如下表:
按分層抽樣的方法在該月生產(chǎn)的轎車中抽取50輛,其中A類轎車20輛。
(I)求x的值;
(II)用分層抽樣的方法在B類轎車中抽取一個(gè)容量為6的樣本,從樣本中任意取2輛,求至少有一輛舒適轎車的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省寧波市高三高考理數(shù)模擬試題 題型:解答題
(本小題滿分14分)
函數(shù)定義在區(qū)間[a, b]上,設(shè)“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設(shè),
,
若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)
為區(qū)間上的“第k類壓縮函數(shù)”.
(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;
(Ⅱ) 若,函數(shù)是上的“第3類壓縮函數(shù)”,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年河北冀州中學(xué)高一年級(jí)下學(xué)期期末考試文科數(shù)學(xué)(A卷) 題型:解答題
(本小題滿分12分)某工廠家具車間造A,B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A,B型桌子分別需要1 h和2 h,漆工油漆一張A,B型桌子分別需要3 h和1 h;又知木工、漆工每天工作分別不得超過8 h和9 h,而工廠造一張A,B型桌子分別獲利潤2千元和3千元,試問:工廠每天應(yīng)生產(chǎn)A,B型桌子各多少張,才能獲得最大利潤?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com