已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R),,
(Ⅰ)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達式;
(Ⅱ)在(Ⅰ)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k 的取值范圍;
(Ⅲ)設(shè)mn<0,m+n>0,a>0,且函數(shù)f(x)為偶函數(shù),判斷F(m)+F(n)是否大于0?
解:(Ⅰ)因為f(-1)=0,所以a-b+1=0,
因為f(x)的值域為[0,+∞),
所以,
所以,解得b=2,a=1,
所以,
所以;
(Ⅱ)因為,
所以當時g(x)單調(diào),
即k的范圍是時,g(x)是單調(diào)函數(shù);
(Ⅲ)因為f(x)為偶函數(shù),所以,
所以
因為mn<0,
依條件設(shè)m>0,則n<0,
又因為m+n>0,
所以m>-n>0,所以|m|>|-n|,
此時,
所以。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案