一次研究性課堂上,老師給出函數(shù)f(x)=(x∈R),三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)分別給出命題:

甲:函數(shù)f(x)的值域?yàn)?-1,1);

乙:若x1≠x2,則一定有f(x1)≠f(x2);

丙:若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)),fn(x)=對(duì)任意n∈N*恒成立.

你認(rèn)為上述三個(gè)命題中正確有________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,甲、乙、丙三位同學(xué)在研究此函數(shù)時(shí)分別給出命題:
甲:函數(shù)f(x)的值域?yàn)椋?1,1);
乙:若x1≠x2則一定有f(x1)≠f(x2);
丙:若規(guī)定f1(x)=f(x),fn(x)=f(f1(x)),則fn(x)=
x
1+nx
,對(duì)任意的n∈N*恒成立
你認(rèn)為上述三個(gè)命題中正確的個(gè)數(shù)有( 。
A、3個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次研究性課堂上,老師給出了函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)分別給出命題:
①函數(shù)f(x)的值域?yàn)椋?1,1);
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)),則fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立.
你認(rèn)為上述三個(gè)命題中正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)分別依次對(duì)應(yīng)給出下列命題
①函數(shù)f(x)的值域?yàn)椋?1,1);
②若x1≠x2,則一定有f (x1)≠f (x2);
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)), 則 fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立.
你認(rèn)為上述三個(gè)命題中正確的題號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)在研究此函數(shù)時(shí)給出以下命題:
①函數(shù)f(x)的值域?yàn)閇-1,1];     
②若x1≠x2,則一定有f(x1)≠f(x2);
③對(duì)任意的x1,x2∈R,存在x0,使得f(x1)+f(x2)=2f(x0)成立;
④若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)), 則 fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立.
你認(rèn)為上述命題中正確的是
②③
②③
.(請(qǐng)將正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)分別給出命題:
①函數(shù)f(x)的值域?yàn)?span id="7ab5xri" class="MathJye">(-
1
2
1
2
);
②若x1≠x2,則一定有f(x1)≠f(x2);
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)), 則 fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立.
你認(rèn)為上述三個(gè)命題中正確的是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案