【題目】已知函數(shù)在處的導(dǎo)數(shù)為,,
(1)若不等式對任意恒成立,求實(shí)數(shù)的取值范圍.
(2)若在上有且只有一個(gè)零點(diǎn),求的取值范圍.
【答案】(1);(2)
【解析】
(1)由,求出,當(dāng)時(shí),易知不等式成立;當(dāng)時(shí),恒成立可轉(zhuǎn)化為恒成立,令,求導(dǎo)判斷的單調(diào)性,求出最小值,即可得到的取值范圍;
(2)由(1)知,,從而,因?yàn)楹瘮?shù)為偶函數(shù),且,所以要使在上有且只有一個(gè)零點(diǎn),只需時(shí),和沒有交點(diǎn),對、、三種情況分類討論,可得的取值范圍.
(1)由題意,,由,解得,
所以,
①當(dāng)時(shí),,,不等式成立,
②當(dāng)時(shí),恒成立可轉(zhuǎn)化為恒成立,
令,,
,
令,則,
因?yàn)?/span>,所以恒成立,
在上單調(diào)遞減,,
又時(shí),,所以,
所以在上單調(diào)遞減,,
所以;
(2)由(1)知,,
所以,
則,
所以是偶函數(shù),且,
所以要使在上有且只有一個(gè)零點(diǎn),
只需時(shí),和沒有交點(diǎn).
①當(dāng)時(shí),,
,解得,,不成立;
②當(dāng)時(shí),和的圖象如圖1所示,
由圖像知,當(dāng)時(shí),和相交于原點(diǎn),
和只有一個(gè)交點(diǎn),故時(shí)成立;
③當(dāng)時(shí),和的圖象如圖2所示,
有圖象知,要使和只有一個(gè)交點(diǎn),
則對任意,有,即,
即在恒成立,
,當(dāng)時(shí),恒成立,
所以即在單調(diào)遞增,,
此時(shí)成立,符合題意,
當(dāng)時(shí),存在,使得在上遞減,此時(shí),不合題意,
綜上所述,當(dāng)在上有且只有一個(gè)零點(diǎn),.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ:的左,右焦點(diǎn)分別為F1(,0),F2(,0),橢圓的左,右頂點(diǎn)分別為A,B,已知橢圓Γ上一異于A,B的點(diǎn)P,PA,PB的斜率分別為k1,k2,滿足.
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(2)若過橢圓Γ左頂點(diǎn)A作兩條互相垂直的直線AM和AN,分別交橢圓Γ于M,N兩點(diǎn),問x軸上是否存在一定點(diǎn)Q,使得∠MQA=∠NQA成立,若存在,則求出該定點(diǎn)Q,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“眾志成城,抗擊疫情,一方有難,八方支援”,在此次抗擊疫情過程中,各省市都派出援鄂醫(yī)療隊(duì). 假設(shè)汕頭市選派名主任醫(yī)生,名護(hù)士,組成三個(gè)醫(yī)療小組分配到湖北甲、乙、丙三地進(jìn)行醫(yī)療支援,每個(gè)小組包括名主任醫(yī)生和名護(hù)士,則不同的分配方案有( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面為菱形,,,為的中點(diǎn),為上一點(diǎn),且,若,.
(1)求證:平面;
(2)求證:平面;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),.
(Ⅰ)求函數(shù)在處的切線;
(Ⅱ)若函數(shù)在處有最大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面ABCD,,,,.
(1)求證:平面PAD;
(2)若E是PC的中點(diǎn),求直線BE與平面PAD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)當(dāng)時(shí),證明:;
(2)已知點(diǎn),點(diǎn),O為坐標(biāo)原點(diǎn),函數(shù),請判斷:當(dāng)時(shí)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,平面,底面是矩形,,,,為棱的中點(diǎn).
(1)求直線與平面所成角的正弦值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(0,-1),直線l與C的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com