已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).
(1)求證:f(x)是奇函數(shù);
(2)如果x∈R+,f(x)<0,并且f(1)=-,試求f(x)在區(qū)間[-2,6]上的最值.
(1)證明漸近線(xiàn)(2)f(x)在區(qū)間[-2,6]上的最大值為1,最小值為-3.
(1)證明∵函數(shù)定義域?yàn)镽,其定義域關(guān)于原點(diǎn)對(duì)稱(chēng).
∵f(x+y)-f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,
∴f(0)-f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),
∴f(x)為奇函數(shù).
(2)解 方法一 設(shè)x,y∈R+,∵f(x+y)=f(x)+f(y),
∴f(x+y)-f(x)=f(y).∵x∈R+,f(x)<0,
∴f(x+y)-f(x)<0,∴f(x+y)<f(x).
∵x+y>x,∴f(x)在(0,+∞)上是減函數(shù).又∵f(x)為奇函數(shù),f(0)=0,
∴f(x)在(-∞,+∞)上是減函數(shù).∴f(-2)為最大值,f(6)為最小值.
∵f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,
f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在區(qū)間[-2,6]上的最大值為1,最小值為-3.
方法二 設(shè)x1<x2,且x1,x2∈R.
則f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上單調(diào)遞減.
∴f(-2)為最大值,f(6)為最小值.∵f(1)=-,
∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在區(qū)間[-2,6]上的最大值為1,最小值為-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
A、1個(gè) | B、2個(gè) | C、3個(gè) | D、4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題
|
A.1個(gè) | B.2個(gè) | C.3個(gè) | D.4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<0;
(2)若不等式f(x)≥f(1)對(duì)x∈R恒成立,求f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).
(1)求證:f(x)是奇函數(shù);
(2)如果x>0時(shí),f(x)<0,并且f(1)=-,試求f(x)在區(qū)間[-2,6]上的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com