(江西卷理18)某柑桔基地因冰雪災(zāi)害,使得果林嚴(yán)重受損,為此有關(guān)專家提出兩種拯救果林的方案,每種方案都需分兩年實(shí)施;若實(shí)施方案一,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5. 若實(shí)施方案二,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5; 第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6. 實(shí)施每種方案,第二年與第一年相互獨(dú)立。令表示方案實(shí)施兩年后柑桔產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出的分布列;
(2)實(shí)施哪種方案,兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實(shí)施兩年后柑桔產(chǎn)量達(dá)不到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益10萬元;兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益15萬元;柑桔產(chǎn)量超過災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益20萬元;問實(shí)施哪種方案所帶來的平均效益更大?
【試題解析】(1)的所有取值為
的所有取值為,
、的分布列分別為:
| 0.8 | 0.9 | 1.0 | 1.125 | 1.25 |
P | 0.2 | 0.15 | 0.35 | 0.15 | 0.15 |
| 0.8 | 0.96 | 1.0 | 1.2 | 1.44 |
P | 0.3 | 0.2 | 0.18 | 0.24 | 0.08 |
(2)令A(yù)、B分別表示方案一、方案二兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量這一事件,
,
可見,方案二兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大
(3)令表示方案所帶來的效益,則
| 10 | 15 | 20 |
P | 0.35 | 0.35 | 0.3 |
| 10 | 15 | 20 |
P | 0.5 | 0.18 | 0.32 |
所以
可見,方案一所帶來的平均效益更大。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(遼寧卷理18)某批發(fā)市場對某種商品的周銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近100周的統(tǒng)計(jì)結(jié)果如下表所示:
周銷售量 | 2 | 3 | 4 |
頻數(shù) | 20 | 50 | 30 |
(Ⅰ)根據(jù)上面統(tǒng)計(jì)結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
(Ⅱ)已知每噸該商品的銷售利潤為2千元,表示該種商品兩周銷售利潤的和(單位:千元).若以上述頻率作為概率,且各周的銷售量相互獨(dú)立,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(遼寧卷理18)某批發(fā)市場對某種商品的周銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近100周的統(tǒng)計(jì)結(jié)果如下表所示:
周銷售量 | 2 | 3 | 4 |
頻數(shù) | 20 | 50 | 30 |
(Ⅰ)根據(jù)上面統(tǒng)計(jì)結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
(Ⅱ)已知每噸該商品的銷售利潤為2千元,表示該種商品兩周銷售利潤的和(單位:千元).若以上述頻率作為概率,且各周的銷售量相互獨(dú)立,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(江西卷理18)某柑桔基地因冰雪災(zāi)害,使得果林嚴(yán)重受損,為此有關(guān)專家提出兩種拯救果林的方案,每種方案都需分兩年實(shí)施;若實(shí)施方案一,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5. 若實(shí)施方案二,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5; 第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6. 實(shí)施每種方案,第二年與第一年相互獨(dú)立。令表示方案實(shí)施兩年后柑桔產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出的分布列;
(2)實(shí)施哪種方案,兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實(shí)施兩年后柑桔產(chǎn)量達(dá)不到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益10萬元;兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益15萬元;柑桔產(chǎn)量超過災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益20萬元;問實(shí)施哪種方案所帶來的平均效益更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(陜西卷理18)某射擊測試規(guī)則為:每人最多射擊3次,擊中目標(biāo)即終止射擊,第次擊中目標(biāo)得分,3次均未擊中目標(biāo)得0分.已知某射手每次擊中目標(biāo)的概率為0.8,其各次射擊結(jié)果互不影響.
(Ⅰ)求該射手恰好射擊兩次的概率;
(Ⅱ)該射手的得分記為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com