精英家教網 > 高中數學 > 題目詳情
,是兩條不同的直線,,是兩個不同的平面,則下列正確命題的序號
     
①.若  ,, 則   ;      ②.若,,則   ;
③. 若  ,則   ;      ④.若   ,,則  

試題分析:由“兩平行線有一條垂直于一個平面,則另一條直線也垂直于這個平面”,①正確;
②.若, 則 ;不正確,還有可能;
③.若,,則,不正確,還有可能相交;
④.若   ,,則  .不正確,應為。綜上知,答案為①。
點評:簡單題,高考中的常見題型,記清定理、法則是關鍵。舉反例,可說明不成立。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

是兩條異面直線,是兩個不同平面,,,則
A.分別相交B.都不相交
C.至多與中一條相交D.至少與中的一條相交

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點,且.證明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,

(1)求證:;
(2)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是三個不重合的平面,a,b是兩條不重合的直線,有下列三個條件:①如果命題且_______,則為真命題,則可以在橫線處填入的條件是(  )
A.①或②B.②或③C.①或③ D.只有②

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖1,在直角梯形中,,,且
現以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.
(1)求證:∥平面;
(2)求證:平面;
(3)求點到平面的距離.
  
                                    圖

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面,
,的中點.

(Ⅰ)求和平面所成的角的大。
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知三棱柱的側棱與底面邊長都相等,在底面上的射影為的中點D,則異面直線AD與所成的角的余弦值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四邊形中,對角線,的重心,過點的直線分別交,沿折起,沿折起,正好重合于.

(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.

查看答案和解析>>

同步練習冊答案