如果函數(shù)的定義域?yàn)镽,對于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

(1)  ,(2) 當(dāng)時(shí),,當(dāng)時(shí),, (3) .

解析試題分析:(1)新定義問題,必須從定義出發(fā),實(shí)際是對定義條件的直譯. 由,(2)由 性質(zhì)知函數(shù)為偶函數(shù). ∴當(dāng)時(shí),∵單調(diào)增,∴時(shí),,當(dāng)時(shí),∵單調(diào)減,在上單調(diào)增,又,∴時(shí),,當(dāng)時(shí),∵單調(diào)減,在上單調(diào)增,又,∴時(shí),. (3) ∵函數(shù)具有“性質(zhì)” ∴∴函數(shù)是以2為周期的函數(shù). 當(dāng)時(shí),為偶函數(shù),因此易得函數(shù)是以1為周期的函數(shù).結(jié)合圖像得: ①當(dāng)時(shí),要使得有2013個(gè)交點(diǎn),只要在區(qū)間有2012個(gè)交點(diǎn),而在內(nèi)有一個(gè)交點(diǎn)∴,從而得,②當(dāng)時(shí),同理可得,③當(dāng)時(shí),不合題意, 綜上所述.
(1)由

∴函數(shù)具有“性質(zhì)”,其中       2分
(2) ∵具有“性質(zhì)”

設(shè),則,∴
              4分
當(dāng)時(shí),∵單調(diào)增,∴時(shí),      5分
當(dāng)時(shí),∵單調(diào)減,在上單調(diào)增
,∴時(shí),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
證明:(1)存在唯一,使;
(2)存在唯一,使,且對(1)中的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)(2011•湖北)設(shè)函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b為常數(shù),已知曲線y=f(x)與y=g(x)在點(diǎn)(2,0)處有相同的切線l.
(Ⅰ) 求a、b的值,并寫出切線l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三個(gè)互不相同的實(shí)根0、x1、x2,其中x1<x2,且對任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•湖北)設(shè)a>0,b>0,已知函數(shù)f(x)=
(1)當(dāng)a≠b時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x>0時(shí),稱f(x)為a、b關(guān)于x的加權(quán)平均數(shù).
(1)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(2)a、b的幾何平均數(shù)記為G.稱為a、b的調(diào)和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中為正整數(shù),,,均為常數(shù),曲線處的切線方程為.
(1)求,,的值;     
(2)求函數(shù)的最大值;
(3)證明:對任意的都有.(為自然對數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)上的值域;
(2)設(shè),若存在,使得以為三邊長的三角形不存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是常數(shù)且)在區(qū)間上有.
(1)求的值;
(2)若當(dāng)時(shí),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,函數(shù)的圖像與直線的相鄰兩個(gè)交點(diǎn)之間的距離為
(1)求的值;
(2)求函數(shù)上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案