【題目】已知定義域為的函數(shù)對任意實數(shù),滿足:,且,,并且當時,.給出如下結論:①函數(shù)是偶函數(shù);②函數(shù)在上單調遞增;③函數(shù)是以2為周期的周期函數(shù);④.其中正確的結論是( )
A.①②B.②③C.①④D.③④
【答案】B
【解析】
①令y=-x,利用函數(shù)的奇偶性定義和題中關系式,可推導出f(-x)=-f(x)的關系是奇函數(shù)非偶函數(shù);②令,利用函數(shù)單調性定義和題中關系式,可判斷f(x1)>f(x2)可得為增函數(shù);③由題中關系式用x+2代x,-x代y,可推導f(x+2)=f(x);④利用函數(shù)周期性將f()化簡為f().
令,可得,∴,函數(shù)是奇函數(shù),故①不正確;
設,則∵當時,,
∴,∴,∴函數(shù)在上單調遞增,故②正確;
∵,∴,
∴函數(shù)是以2為周期的周期函數(shù),故③正確;
∵,故④不正確;
綜上所述:答案為B.
故選:B
科目:高中數(shù)學 來源: 題型:
【題目】設中心在原點,焦點在軸上的橢圓過點,且離心率為.為的右焦點,為上一點,軸,的半徑為.
(1)求和的方程;
(2)若直線與交于兩點,與交于兩點,其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內存在實數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設是定義在上的“類函數(shù)”,求是實數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之數(shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經經歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設計的,那么在兩個判斷框中,可以先后填入( )
A. 是偶數(shù)?,? B. 是奇數(shù)?,?
C. 是偶數(shù)?, ? D. 是奇數(shù)?,?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第二屆中國國際進口博覽會11月初在上海舉行了,在這屆進口博覽會上,某高校派出的4人承擔了連續(xù)5天的志愿者服務,若每天只安排一人且每人至少參加一天志愿服務,則甲參加2天志愿服務的概率為________(結果用數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項公式(不必證明).
(2)將數(shù)列依次按項、項、項、項、項循環(huán)地分為,,,,各個括號內各數(shù)之和,設由這些和按原來括號的前后順序構成的數(shù)列為,求的值.
(3)設為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件,為激發(fā)大家的學習興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動,這款軟件的激活碼為下列數(shù)學問題的答案:已知數(shù)列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一項是,接下來的兩項是,再接下來的三項是,……,以此類推,求滿足如下條件的最小整數(shù)且該數(shù)列的前項和為2的整數(shù)冪,那么該軟件的激活碼是________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩個函數(shù)在公共定義域上恒有,則稱這兩個函數(shù)是該區(qū)間上的“同步函數(shù)”.
(1)試判斷與是否為公共定義域上的“同步函數(shù)”?
(2)已知函數(shù)與是公共區(qū)域上的“同步函數(shù)”,求實數(shù)的取值范圍;
(3)已知與在上是“同步函數(shù)”,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記為數(shù)列的前項和.“任意正整數(shù),均有”是“為遞增數(shù)列”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com