分析 由題意猜想gn(x)=$\frac{x}{1+nx}$,利用數(shù)學(xué)歸納法的證明步驟進(jìn)行證明.
解答 解:由題設(shè)得,g(x)=$\frac{x}{1+x}$(x≥0).由已知得,g1(x)=$\frac{x}{1+x}$,
g2(x)=g(g1(x))=$\frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}$=$\frac{x}{1+2x}$,g3(x)=$\frac{x}{1+3x}$,…,可得gn(x)=$\frac{x}{1+nx}$,
下面用數(shù)學(xué)歸納法證明.
①當(dāng)n=1時(shí),g1(x)=$\frac{x}{1+x}$,結(jié)論成立.
②假設(shè)n=k(k≥2且k∈N*)時(shí)結(jié)論成立,
即gk(x)=$\frac{x}{1+kx}$.那么,當(dāng)n=k+1時(shí),
gk+1(x)=g(gk(x))=$\frac{gk(x)}{1+gk(x)}$=$\frac{\frac{x}{1+kx}}{1+\frac{x}{1+kx}}$=$\frac{x}{1+(k+1)x}$,
即結(jié)論成立.
由①②可知,結(jié)論對(duì)n∈N*成立.
點(diǎn)評(píng) 本題考查數(shù)學(xué)歸納法,考查學(xué)生的計(jì)算能力,考查猜想與證明,正確理解數(shù)學(xué)歸納法的證明步驟是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |t1+t2| | B. | |t1-t2| | C. | $\sqrt{{a}^{2}+^{2}}$|t1-t2| | D. | $\frac{|{t}_{1}-{t}_{2}|}{\sqrt{{a}^{2}+^{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k-1 | B. | k | C. | k+1 | D. | $\frac{k(k+1)}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{7}$ | B. | $\frac{11}{14}$ | C. | -$\frac{5}{7}$ | D. | -$\frac{11}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com