已知函數(shù)函f(x)=x|x|-2x(x∈R)
(1)判斷函數(shù)的奇偶性,并用定義證明;
(2)作出函數(shù)f(x)=x|x|-2x的圖象;
(3)討論方程x|x|-2x=a根的情況.
(1)∵f(x)=x|x|-2x=
x2-2x,x≥0
-x2-2x,x<0

∴當(dāng)x>0時(shí),-x<0,故f(-x)=-x2+2x,=-f(x)
當(dāng)x<0時(shí),-x>0,故f(-x)=x2+2x=-f(x)
當(dāng)x=0時(shí),-x=0,故f(-x)=-f(x)=0
綜上函數(shù)f(x)=x|x|-2x為奇函數(shù)
(2)由(1)中f(x)=x|x|-2x=
x2-2x,x≥0
-x2-2x,x<0

則函數(shù)的圖象如下圖所示:

(3)由圖可知:
當(dāng)a<-1,或a>1時(shí),方程x|x|-2x=a有一個(gè)根;
當(dāng)a=-1,或a=1時(shí),方程x|x|-2x=a有二個(gè)根;
當(dāng)-1<a<1時(shí),方程x|x|-2x=a有三個(gè)根;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)方程x3-3x=k有3個(gè)不等的實(shí)根,則常數(shù)k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)方程2x+x-4=0的根為x1,方程log2x+x-4=0的根為x2,則x1+x2=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=
x2+bx+c,x≤0
2,x>0
,若f(-4)=f(0),f(-2)=-2,則函數(shù)g(x)=f(x)-x的零點(diǎn)個(gè)數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程
1-x2
x+a
-1=0
僅有一解,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(x)是定義在R上的以3為周期的奇函數(shù),f(2)=0,則方程f(x)=0在區(qū)間(0,6)內(nèi)解的個(gè)數(shù)(  )
A.是3個(gè)B.是4個(gè)C.是5個(gè)D.多于5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=x2-2x-3,在整個(gè)定義域內(nèi)其零點(diǎn)個(gè)數(shù)為(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知{x1,x2,x3,x4}⊆{x∈R+|(x-6)sin
π
2
x
=1},則x1+x2+x3+x4的最小值為(  )
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)x在(-∞,+∞)上變化時(shí),導(dǎo)函數(shù)f′(x)的符號(hào)變化如下表:
x(-∞.1)1(1,4)4(4,+∞)
f′(x)-0+0-
則函數(shù)f(x)的圖象的大致形狀為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案