【題目】命題p:方程表示焦點在y軸上的橢圓,其離心率的范圍是,

命題q:某人射擊,每槍中靶的概率為,他連續(xù)射擊兩槍至少有一槍中靶的概率超過,若復(fù)合命題:非p為真,p或q為真,求實數(shù)的取值范圍.

【答案】

【解析】

先根據(jù)題意得到命題p,q分別為真命題時的取值范圍,然后由非p為真,p或q為真”得到p為假命題,q為真命題,進而得到關(guān)于的不等式組,解不等式組可得所求的范圍.

對于命題p,由橢圓的焦點在y軸上可得

又離心率的范圍是,

,即

∴當(dāng)命題p為真命題時,有,解得

對于命題q,根據(jù)獨立事件同時發(fā)生的概率可得,他連續(xù)射擊兩槍至少有一槍中靶的概率為,

由題意得,解得,

,

∴當(dāng)命題q為真命題時,則有

∵非p為真命題,p或q為真命題,

∴p為假命題,q為真命題,

,解得,

∴實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域為的奇函數(shù).

1)求證:函數(shù)上是增函數(shù);

2)不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的最小值;

2)若對于任意恒成立,求的取值范圍;

3)若,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,當(dāng)時,.

(Ⅰ)若函數(shù)過點,求此時函數(shù)的解析式;

(Ⅱ)若函數(shù)只有一個零點,求實數(shù)的值;

(Ⅲ)設(shè),若對任意實數(shù),函數(shù)上的最大值與最小值的差不大于1,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的最大值是,求的值;

2)已知,若存在兩個不同的正數(shù),當(dāng)函數(shù)的定義域為時,的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)短軸的兩個頂點與右焦點的連線構(gòu)成等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)若直線,都經(jīng)過橢圓的左頂點,與橢圓分別交于,兩點,且.求證:直線過定點,并求出該定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上存在一點 到焦點的距離等于

(1)求拋物線的方程;

(2)已知點在拋物線上且異于原點,點為直線上的點,且.求直線與拋物線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,已知.

1)求數(shù)列的通項公式;

2)求證:數(shù)列是等差數(shù)列;

3)設(shè)數(shù)列滿足的前項和.

查看答案和解析>>

同步練習(xí)冊答案