如圖,在平面直角坐標系中,、分別是橢圓的頂點,過坐標原點的直線交橢圓于、兩點,其中在第一象限.過作軸的垂線,垂足為.連接,并延長交橢圓于點.設直線的斜率為.
(Ⅰ)當直線平分線段時,求的值;
(Ⅱ)當時,求點到直線的距離;
(Ⅲ)對任意,求證:.
(Ⅰ);(Ⅱ);(Ⅲ)詳見解析
【解析】
試題分析:(Ⅰ)求出點、的中點坐標,再用斜率公式可求得的值;(Ⅱ)求出直線的方程,再用點到直線的距離公式可求得點到直線的距離;
(Ⅲ)思路一:圓錐曲線題型的一個基本處理方法是設而不求,其核心是利用 ----(*).要證明,只需證明它們的斜率之積為-1. 但直接求它們的積,不好用(*)式,此時需要考慮轉(zhuǎn)化.
思路二: 設,然后用表示出的坐標.這種方法要注意直線的方程應設為: ,若用點斜式,則運算量大為增加.
此類題極易在運算上出錯,需倍加小心.
試題解析:(Ⅰ)由題設知: ,所以線段的中點為,
由于直線平分線段,故直線過線段的中點,又直線過坐標原點,
所以
(Ⅱ)將直線的方程代入橢圓方程得: ,因此
于是,由此得直線的方程為:
所以點到直線即的距離
(Ⅲ)法一:設,則
由題意得:
設直線的斜率分別為,因為在直線上,所以
從而,所以:
法二:
所以直線的方程為: 代入橢圓方程得:
由韋達定理得:
所以
,所以
考點:本題考查橢圓的方程、直線的方程,中點坐標公式,點到直線的距離,兩直線垂直的判定;考查韋達定理.
科目:高中數(shù)學 來源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com