已知全集U=R,A={x|2≤x<4},B={x|3x-7≥8-2x},求:
(1)A∩B;
(2)(∁A)∩B;
(3)∁(A∪B).
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(1)求出B中不等式的解集確定出B,找出A與B的交集即可;
(2)根據(jù)全集U及A求出A的補(bǔ)集,找出A補(bǔ)集與B的交集即可;
(3)找出A與B的并集,確定出并集的補(bǔ)集即可.
解答: 解:(1)由B中的不等式解得:5x≥15,即x≥3,
∴B=[3,+∞),
∵A={x|2≤x<4}=[2,4),
∴A∩B=[3,4);

(2)∵全集U=R,A=[2,4),
∴∁UA=(-∞,2)∪[4,+∞),
則(∁UA)∩B=[3,+∞);
(3)∵A=[2,4),B=[3,+∞),
∴A∪B=[2,+∞),
則∁U(A∪B)=(-∞,2).
點(diǎn)評:此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=ex(x+1)給出下列命題:
①當(dāng)x>0時,f(x)=ex(1-x)
②函數(shù)f(x)有2個零點(diǎn)
③f(x)>0的解集為(-1,0)∪(1,+∞)
④?x1,x2∈R,都有|f(x1)-f(x2)|<2
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)Z=(1+i)(2-i)的實(shí)部是m,虛部是n,則m•n的值是( 。
A、3B、-3C、3iD、-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)增減性:f(x)=3x-
6
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足:a1=2,an+1=
2
an+1
,bn=
an+2
an-1

(1)求數(shù)列{bn}的通項公式;
(2)求使|an-1|<
1
2n
成立的正整數(shù)n的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)列{an}的前n項和為Sn,且an=2
Sn
-1
,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
2a2
x
-alnx(a∈R).
(1)當(dāng)a≥0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-2bx+4-ln2,當(dāng)a=1時,若對任意的x1,x2∈[1,e],都有f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.
(3)求證:ln(n+1)<1+
1
2
+
1
3
+…+
1
n
+
n
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax,g(x)=
1
2
x2-lnx-
5
2

(1)若對一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求實(shí)數(shù)a的取值范圍;
(2)記G(x)=
1
2
x2-
5
2
-g(x)
,求證:G(x)>
1
ex
-
2
ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),又f(x)在(-∞,0)是增函數(shù),且f(-2)=0,則滿足f(log3x)<0的x的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案