【題目】函數(shù) 則f(﹣1)= , 若方程f(x)=m有兩個不同的實數(shù)根,則m的取值范圍為

【答案】2﹣ ;(0,2)
【解析】解:由分段函數(shù)的表達式得f(﹣1)=| ﹣2|=2﹣ ,所以答案是:2﹣
作出函數(shù)f(x)的圖像如圖:

當x<0時,f(x)=2﹣ex∈(1,2),
∴當x≤1時,f(x)∈[0,2),
當x≥1時,f(x)≥0,
若方程f(x)=m有兩個不同的實數(shù)根,
則0<m<2,
即實數(shù)m的取值范圍是(0,2),
所以答案是:2﹣ ,(0,2).
【考點精析】關于本題考查的函數(shù)的值和函數(shù)的零點與方程根的關系,需要了解函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法;二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐ABCD中,AB=AC=BD=CD=3,AD=BC=2,點M,N分別為AD,BC的中點,則異面直線AN,CM所成的角的余弦值是(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓C1 =1(a>b>0),長軸的右端點與拋物線C2:y2=8x的焦點F重合,且橢圓C1的離心率是
(1)求橢圓C1的標準方程;
(2)過F作直線l交拋物線C2于A,B兩點,過F且與直線l垂直的直線交橢圓C1于另一點C,求△ABC面積的最小值,以及取到最小值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在由圓O:x2+y2=1和橢圓C: =1(a>1)構成的“眼形”結構中,已知橢圓的離心率為 ,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得 = ,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)在某一個周期內的圖象時,列表并填入了部分數(shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補充完整;函數(shù)的解析式為= (直接寫出結果即可);

(2)求函數(shù)的單調遞增區(qū)間;

(3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知線段AB的長為2,動點C滿足 (μ為常數(shù),μ>﹣1),且點C始終不在以點B為圓心 為半徑的圓內,則μ的范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】斜棱柱ABC﹣A1B1C1中,側面AA1C1C⊥面ABC,側面AA1C1C為菱形,∠A1AC=60°,E,F(xiàn)分別為A1C1和AB的中點.

(1)求證:平面CEF⊥平面ABC;
(2)若三棱柱的所有棱長為2,求三棱柱F﹣ECB的體積;
(3)D為棱BC上一點,若C1D∥EF,請確定點D位置,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1:(x﹣1)2+y2=1與曲線C2:y(y﹣mx﹣m)=0,則曲線C2恒過定點;若曲線C1與曲線C2有4個不同的交點,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC

(1)求證:A,B,C,P四點共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.

查看答案和解析>>

同步練習冊答案