【題目】已知動圓P恒過定點(diǎn),且與直線相切.

(Ⅰ)求動圓P圓心的軌跡M的方程;

(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.

【答案】(1) ;(2)

【解析】

1)根據(jù)題意及拋物線的定義可得軌跡的方程為;(2)設(shè)邊所在直線方程為,代入拋物線方程后得到關(guān)于的二次方程,進(jìn)而由根與系數(shù)的關(guān)系可得,又由兩平行線間的距離公式可得,由求出,于是可得正方形的邊長,進(jìn)而可得其面積.

(1)由題意得動圓的圓心到點(diǎn)的距離與它到直線的距離相等,

所以圓心的軌跡是以為焦點(diǎn),以為準(zhǔn)線的拋物線,且,

所以圓心的軌跡方程為

(2)由題意設(shè)邊所在直線方程為

消去整理得,

∵直線和拋物線交于兩點(diǎn),

,解得

設(shè),,

.

又直線與直線間的距離為

,

,解得,

經(jīng)檢驗(yàn)都滿足

∴正方形邊長

∴正方形的面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|xa|+2|x+1|

1)當(dāng)a2時,解不等式fx)>4

2)若不等式fx)<3x+4的解集是{x|x2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計(jì)局從東部選擇江蘇,從中部選擇河北. 湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記.由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn).在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:

普查對象類別

順利

不順利

合計(jì)

企事業(yè)單位

40

50

個體經(jīng)營戶

50

150

合計(jì)

1)寫出選擇 5 個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;

2)補(bǔ)全上述列聯(lián)表(在答題卡填寫),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;

3)根據(jù)該試點(diǎn)普查小區(qū)的情況,為保障第四次經(jīng)濟(jì)普查的順利進(jìn)行,請你從統(tǒng)計(jì)的角度提出一條建議.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列項(xiàng)和為,且.

(1)證明數(shù)列是等比數(shù)列;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),射線軸正半軸重合,射線在第一象限,且與軸正半軸的夾角為,在上有點(diǎn)列,在上有點(diǎn),已知,

1)求點(diǎn)的坐標(biāo);

2)求的坐標(biāo);

3)求面積的最大值,并求出此時的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A2,4

1)設(shè)圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;

3)設(shè)點(diǎn)Tt,o)滿足:存在圓M上的兩點(diǎn)PQ,使得,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知橢圓的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個動點(diǎn),面積的最大值是

(1)求橢圓的方程;

(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三角形ABC中,D是垂足,則推廣到空間,三棱錐中,,O為垂足,且O在三角形BCD內(nèi),則類似的結(jié)論為___________

查看答案和解析>>

同步練習(xí)冊答案