【題目】如圖1.四邊形是邊長為10的菱形,其對角線,現(xiàn)將沿對角線折起,連接,形成如圖2的四面體,則異面直線與所成角的大小為______.在圖2中,設棱的中點為,的中點為,若四面體的外接球的球心在四面體的內部,則線段長度的取值范圍為______.
【答案】
【解析】
連接、,利用線面垂直的判定定理可求異面直線與所成角的大;先根據外接球的性質確定出四面體的外接球球心,利用勾股定理,求出和,進而求出,借助三角函數(shù)的取值范圍以及,即可求出線段長度的取值范圍.
連接、,四邊形是菱形,為棱的中點,
所以,,
又,
則平面,
由平面,
則,即異面直線與所成角的大小為.
由四邊形是邊長為10的菱形,其對角線,
則,,
是的外心,在中線中,
設過點的直線平面,易知平面,
同理是的外心,在中線上,
設過點的直線平面,易知平面,
由對稱性易知、的交點在直線上,
根據外接球的性質,點為四面體的外接球的球心,
,,
,解得,
令,根據題意可知,,且,
則平面,平面,則,
所以,,
,
,
又,,,
,即線段長度的取值范圍為,
故答案為:;
科目:高中數(shù)學 來源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市先后采用甲、乙兩種方案治理空氣污染各一年,各自隨機抽取一年(365天)內100天的空氣質量指數(shù)API的檢測數(shù)據進行分析,若空氣質量指數(shù)值在[0,300]內為合格,否則為不合格.表1是甲方案檢測數(shù)據樣本的頻數(shù)分布表,如圖是乙方案檢測數(shù)據樣本的頻率分布直方圖.
表1:
API值 | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | 大于300 |
天數(shù) | 9 | 13 | 19 | 30 | 14 | 11 | 4 |
(1)將頻率視為概率,求乙方案樣本的頻率分布直方圖中的值,以及乙方案樣本的空氣質量不合格天數(shù);
(2)求乙方案樣木的中位數(shù);
(3)填寫下面2×2列聯(lián)表(如表2),并根據列聯(lián)表判斷是否有90%的把握認為該城市的空氣質量指數(shù)值與兩種方案的選擇有關.
表2:
甲方案 | 乙方案 | 合計 | |
合格天數(shù) | _______ | _______ | _______ |
不合格天數(shù) | _______ | _______ | _______ |
合計 | _______ | _______ | _______ |
附:
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的離心率是,一個頂點是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,是橢圓上異于點的任意兩點,且.試問:直線是否恒過一定點?若是,求出該定點的坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓的離心率為,雙曲線的漸近線與橢圓的交點到原點的距離均為.
(1)求橢圓的標準方程;
(2)若點為橢圓上的動點,三點共線,直線的斜率分別為.
(i)證明:;
(ii)若,設直線過點,直線過點,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是數(shù)列1,,,…,的各項和,,.
(1)設,證明:在內有且只有一個零點;
(2)當時,設存在一個與上述數(shù)列的首項、項數(shù)、末項都相同的等差數(shù)列,其各項和為,比較與的大小,并說明理由;
(3)給出由公式推導出公式的一種方法如下:在公式中兩邊求導得:,所以成立,請類比該方法,利用上述數(shù)列的末項的二項展開式證明:時(其中表示組合數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為提高產品質量,某企業(yè)質量管理部門經常不定期地對產品進行抽查檢測,現(xiàn)對某條生產線上隨機抽取的100個產品進行相關數(shù)據的對比,并對每個產品進行綜合評分(滿分100分),將每個產品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,視頻率作為概率,在該條生產線中隨機抽取3個產品,求所抽取的產品中一等品數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是定義域為的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個判斷:①對于給定的正整數(shù),存在,使得成立;②當a時,對于給定的正整數(shù),存在,使得成立;③當時,函數(shù)既有對稱軸又有對稱中心;④當時,的值只有0或.其中正確判斷的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com