求下列函數(shù)的定義域
(1)f(x)=
x-1
-
3-x
          
(2)f(x)=
log2(-x2+x+6)
x
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件即可求出函數(shù)的定義域.
解答: 解:(1)要使函數(shù)有意義,則
x-1≥0
3-x≥0
,
x≥1
x≤3
,
解得1≤x≤3,
故函數(shù)的定義域?yàn)閇1,3].
(2)要使函數(shù)有意義,則
-x2+x+6≥0
x≠0
,
x2-x-6≤0
x≠0
,
-2≤x≤3
x≠0
,
解得-2≤x≤3且x≠0,
故函數(shù)的定義域?yàn)閧x|-2≤x≤3且x≠0}.
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,根據(jù)條件建立不等式是解決本題的關(guān)鍵.要求熟練掌握常見函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=|log54|,b=|log5(2-
3
)|,c=|log4
17
|,則( 。
A、a<c<b
B、b<c<a
C、a<b<c
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z(1-i)=(1+i)2,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,已知sinA:sinB:sinC=2:3:4,且a+b=10,則向量
AB
在向量
AC
的投影是( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax-lnx
(1)若a=1,求f(x)的單調(diào)區(qū)間與極值;
(2)若函數(shù)f(x)在[1,2]內(nèi)是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cosx,-1),
n
=(
3
sinx,cos2x),設(shè)函數(shù)f(x)=
m
n

(1)求f(x)對(duì)稱中心的坐標(biāo);
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足2bcosA≤2c-a,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=3xsin(2x+5);
(2)y=
x3-1
cosx
+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)P(1,6)與圓(x+2)2+(y-2)2=25相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),對(duì)任意的x∈R,都有f(x-4)=f(2-x)成立,
(1)求2a-b的值;
(2)函數(shù)f(x)取得最小值0,且對(duì)任意x∈R,不等式x≤f(x)≤(
x+1
2
2恒成立,求函數(shù)f(x)的解析式;
(3)若方程f(x)=x沒有實(shí)數(shù)根,判斷方程f(f(x))=x根的情況,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案