(Ⅰ)解:求導(dǎo)函數(shù),
,函數(shù)的定義域?yàn)椋?1,+∞)
∵-1<x<0時(shí),f'(x)>0;x>0時(shí),f'(x)<0;
∴x=0是函數(shù)的極大值點(diǎn),也是最大值點(diǎn)
∴函數(shù)f(x)的最大值為f(0)=0
(Ⅱ)證明:構(gòu)造函數(shù)G(x)=e
x-b-1-ln
,G'(x)=e
x-b-
當(dāng)x>b≥0時(shí),G′(x)>0,所以G(x)單調(diào)遞增
又∵G′(b)=1-
=
,∴0≤b<a,G(a)>G(b)≥0
∴e
a-b-1-ln
>0,即
分析:(Ⅰ)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,從而可求函數(shù)f(x)的最大值;
(Ⅱ)構(gòu)造函數(shù)G(x)=e
x-b-1-ln
,G'(x)=e
x-b-
,可得當(dāng)x>b≥0時(shí),G'(x)>0,所以G(x)單調(diào)遞增,根據(jù) G(b)=1-
=
,即可證得結(jié)論.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值與單調(diào)性,考查構(gòu)造函數(shù)證明不等式,解題的關(guān)鍵是構(gòu)建函數(shù),正確求導(dǎo).