A. | {x|x<-1或x>3} | B. | {x|-1<x<3} | C. | {x|x<-3或x>1} | D. | {x|-1<x<2或2<x<3} |
分析 要求的不等式即 (x-3)(x+1)(x-2)2<0,可得 $\left\{\begin{array}{l}{(x-3)(x+1)<0}\\{x≠2}\end{array}\right.$,由此求得它的解集.
解答 解:不等式(x2-2x-3)(x2-4x+4)<0,即 (x-3)(x+1)(x-2)2<0,∴$\left\{\begin{array}{l}{(x-3)(x+1)<0}\\{x≠2}\end{array}\right.$,
求得-1<x<3,且x≠2,
故選:D.
點評 本題主要考查高次不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,5] | B. | [2,6] | C. | [2,10] | D. | [3,11] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2sinxcosx | B. | f(x)=xex | C. | f(x)=x3-x | D. | f(x)=-x+lnx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com