已知算法如圖:
(1)指出其功能
(2)畫出流程圖.
考點:程序框圖
專題:算法和程序框圖
分析:(1)根據(jù)算法語句判斷算法的功能為求函數(shù):y=
x2+1    x<-2
x            -2≤x≤2
x2-1      x>2
的函數(shù)值;
(2)根據(jù)選擇結(jié)構(gòu)的程序框圖,畫出其框圖.
解答: 解:(1)算法的功能為求函數(shù):y=
x2+1    x<-2
x            -2≤x≤2
x2-1      x>2
的函數(shù)值.

(2)程序框圖如圖:
點評:本題考查了由算法語句判斷算法的功能及畫出程序框圖,根據(jù)算法語句的形式與含義,畫出程序框圖是解答此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ),對任意的實數(shù)x均存在a使得f(a)≤f(x)≤f(0)成立,且|a|的最小值為
π
2
,則函數(shù)f(x)的單調(diào)遞減區(qū)間為( 。
A、[kπ-
π
2
,kπ](k∈Z)
B、[kπ,kπ+
π
2
](k∈Z)
C、[2kπ-
π
2
,2kπ](k∈Z)
D、[2kπ,2kπ+
π
2
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b為直線,α為平面,則下面四個命題:
①若a∥b,a⊥α,則b⊥α;
②若a⊥α,b⊥α,則a∥b;
③若a⊥α,a⊥b,則b∥α;
④若a∥α,a⊥b,則b⊥α;
其中正確的命題是( 。
A、①②B、①②③
C、②③④D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
sinωsin(ωx+
π
2
)+2cos2ωx,x∈R(ω>0),在y軸右側(cè)的第一個最高點的橫坐標(biāo)為
π
6
.若將函數(shù)f(x)的圖象向右平移
π
6
個單位后,再將得到的圖象上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)g(x)的最大值及單調(diào)遞減區(qū)間.
(2)(理)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3,且f(A)=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2x+
1-x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,角α的始邊與x軸的非負半軸重合,終邊與單位圓交于點A (x1,yl),將射線OA按逆時針方向旋轉(zhuǎn)
3
后與單位圓交于點B(x2,y2),f(a)=xl-x2
(Ⅰ)若角α為銳角,求f(α)的取值范圍;
(Ⅱ)比較f(2)與f(3)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a⊥直線b,直線a⊥平面β,則b與β的位置關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面上,若復(fù)數(shù)1+bi(b∈R)對應(yīng)的點恰好在實軸上,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷正確的是( 。
A、若a∥α,b∥β,α∥β,則a∥b
B、a⊥α,b⊥β,α⊥β,則a⊥b
C、若a?α,b?β,a∥b,則α∥β
D、若m⊥α,m⊥n,則n∥α

查看答案和解析>>

同步練習(xí)冊答案