(1)寫(xiě)出這個(gè)命題的逆命題;
(2)判斷逆命題是否為真,并給出證明.
解:(1)逆命題:在等比數(shù)列 {an}中,前n項(xiàng)和為Sn,若am,am+2,am+1成等差數(shù)列,則Sm,Sm+2,Sm+1成等差數(shù)列;
(2)設(shè){an}的首項(xiàng)為a1,公比為q,則2am+2=am+am+1,于是2a1qm+1=a1qm-1+a1qm.
由a1≠0,q≠0,化簡(jiǎn)上式得2q2-q-1=0,
解得q=1或q=-,
當(dāng)q=1時(shí),∵Sm=ma1,Sm+2=(m+2)a1,S(m+1)=(m+1)a1,
∴Sm+Sm+1≠2Sm+2,
即Sm,Sm+2,Sm+1不成等差數(shù)列;
當(dāng)q=-時(shí),∵Sm+Sm+1=
而2Sm+2=,
∴Sm+Sm+1=2Sm+2,即Sm,Sm+2,Sm+1成等差數(shù)列;
綜上得,當(dāng)公比q=1時(shí),逆命題為假,當(dāng)q=-時(shí),逆命題為真.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
3 |
20 |
9 |
an |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、(2n-1)2 | ||
B、
| ||
C、4n-1 | ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
an |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com