精英家教網 > 高中數學 > 題目詳情
已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={};
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex-2}.
其中是“垂直對點集”的序號是( )
A.①②
B.②③
C.①④
D.②④
【答案】分析:對于①利用漸近線互相垂直,判斷其正誤即可.對于②、③、④通過函數的定義域與函數的值域的范圍,畫出函數的圖象,利用“垂直對點集”的定義,即可判斷正誤;
解答:解:對于①y=是以x,y軸為漸近線的雙曲線,漸近線的夾角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,滿足好集合的定義;在另一支上對任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立,所以不滿足“垂直對點集”的定義,不是“垂直對點集”.
對于②M={(x,y)|y=sinx+1},對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),滿足“垂直對點集”的定義,所以M是“垂直對點集”;正確.
對于③M={(x,y)|y=log2x},取點(1,0),曲線上不存在另外的點,使得兩點與原點的連線互相垂直,所以不是“垂直對點集”.
對于④M={(x,y)|y=ex-2},如下圖紅線的直角始終存在,對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,-1),則N(ln2,0),滿足“垂直對點集”的定義,所以是“垂直對點集”;正確.

所以②④正確.
故選D.
點評:本題考查“垂直對點集”的定義,利用對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,是本題解答的關鍵,函數的基本性質的考查,注意存在與任意的區(qū)別.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

1、已知集合M={0,x},N={1,2},若M∩N={2},則M∪N為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•南充三模)已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y),x,y∈R},有下列命題
①若f1(x)=
1,x≥0
-1,x<0
則f1(x)∈M;
②若f2(x)=2x,則f2(x)∈M;
③若f3(x)∈M,則y=f3(x)的圖象關于原點對稱;
④若f4(x)∈M則對于任意不等的實數x1,x2,總有
f4(x1)-f4(x2)
x1-x2
<0成立.
其中所有正確命題的序號是
②③
②③

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合M={f(x)|在定義域內存在實數x0,使得f(x0+1)=f(x0)+f(1)成立}.
(1)函數f(x)=
1
x
是否屬于集合M?說明理由.
(2)證明:函數f(x)=2x+x2∈M.
(3)設函數f(x)=lg
a
2x+1
∈M,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•武昌區(qū)模擬)已知集合M={y|y=x+
1
x-1
,x∈R,x≠1},集合N={x|
x
2
 
-2x-3≤0}
,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•上海模擬)已知集合M={f(x)|f(x)+f(x+2)=f(x+1),x∈R},g(x)=sin
πx3

(1)判斷g(x)與M的關系,并說明理由;
(2)M中的元素是否都是周期函數,證明你的結論;
(3)M中的元素是否都是奇函數,證明你的結論.

查看答案和解析>>

同步練習冊答案