已知函數(shù).
(1)已知,且,求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若對任意的x∈,不等式恒成立,求實(shí)數(shù)m的取值范圍.
(1).(2)函數(shù)的單調(diào)增區(qū)間為.(3) m<4 。
【解析】
試題分析:(1)=.
由,得.
∴.
∴,或,
即或.
,∴.
(2)由,得.
∴函數(shù)的單調(diào)增區(qū)間為.
(3) 恒成立,即恒成立,所以只需,而x∈時(shí),, =最小值為1,所以=4,即m<4 。
考點(diǎn):本題主要考查三角函數(shù)和差倍半公式的應(yīng)用,三角函數(shù)的性質(zhì),不等式恒成立問題。
點(diǎn)評:典型題,三角函數(shù)的圖象和性質(zhì)、三角函數(shù)圖象的變換是高考考查的重點(diǎn),為研究三角函數(shù)的性質(zhì),往往要利用誘導(dǎo)公式、和差倍半公式進(jìn)行“化一” 。(II)研究三角函數(shù)單調(diào)區(qū)間,遵循“內(nèi)外層函數(shù),同增異減”。(3)不等式的恒成立問題,往往通過“分離參數(shù)”轉(zhuǎn)化成求函數(shù)最值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1-x |
ax |
1 |
e |
n |
n-1 |
1 |
n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市蒼南中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省月考題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com