如果如圖程序執(zhí)行后輸出的結(jié)果是143,那么在程序until后面的“條件”應(yīng)為( 。
A、i>9B、i>=9
C、i<=9D、i<9
考點(diǎn):程序框圖
專(zhuān)題:算法和程序框圖
分析:由題意知,執(zhí)行程序框圖,寫(xiě)出每次循環(huán)得到的s,i的值,如輸出的結(jié)果是143,則當(dāng)i>9時(shí)退出循環(huán),綜上可得,在程序until后面的“條件”應(yīng)為:i≤9.
解答: 解:由題意知,執(zhí)行程序框圖有
i=13
s=1
第1次執(zhí)行循環(huán)體有,s=13,i=11
滿足條件,第2次執(zhí)行循環(huán)體,有s=143,i=9
不滿足條件,退出循環(huán),輸出s的值為9.
綜上可得,在程序until后面的“條件”應(yīng)為:i≤9.
故選:C.
點(diǎn)評(píng):本題主要考察了程序框圖和算法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)是否存在正數(shù)x1,x2,且|x1-x2|≥1,使得f(x1)=f(x2).若存在,求出x1,x2的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)(x>0)滿足:f(xy)=f(x)+f(y),當(dāng)x<1時(shí)f(x)>0,且f(
1
2
)=1;
(1)證明:y=f(x)是(x>0)上的減函數(shù);
(2)解不等式f(x-3)>f(
1
x
)-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在(0,
π
2
)上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對(duì)任意x∈(0,
π
2
),都有f′(x)sinx<f(x)cosx,則不等式f(x)<2f(
π
6
)sinx的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的是( 。
A、f(x)=x
1
3
B、f(x)=ln
2-x
2+x
C、f(x)=-|x+1|
D、f(x)=
1
2
(ax+a-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2
+ax-5
(1)若函數(shù)在(-∞,+∞)總是單調(diào)函數(shù),求:實(shí)數(shù)a的取值范圍;
(2)若函數(shù)在[1,+∞)上總是單調(diào)函數(shù),求:實(shí)數(shù)a的取值范圍;
(3)若函數(shù)在區(qū)間(-3,1)上單調(diào)遞減,求:實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)(0,5)到直線2x-y=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log
1
2
x+(
1
2
)x
,若f(x2+3)<f(4x),則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
π
2
-α)=
3
5
,則cos(π-α)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案