已知定義域?yàn)椋?∞,0)∪(0,+∞)的函數(shù)f(x)是偶函數(shù),并且在(-∞,0)上是增函數(shù),若f(2)=0,則
f(x)
x
<0的解集是(  )
A、(-2,0)∪(0,2)
B、(-∞,-2)∪(0,2)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(2,+∞)
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)為偶函數(shù),結(jié)合題意確定函數(shù)在(0,+∞)上為減函數(shù),再利用單調(diào)性將不等式等價(jià)轉(zhuǎn)化為具體不等式,解之即得原不等式的解集.
解答: 解:∵函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是增函數(shù),
∴函數(shù)在(0,+∞)上為減函數(shù)
∵函數(shù)f(x)是偶函數(shù),f(2)=0,可得f(-2)=0
∴不等式
f(x)
x
<0等價(jià)于
x>0
f(x)<0
x<0
f(x)>0

當(dāng)x>0時(shí),f(x)<0,即f(x)<f(2),結(jié)合單調(diào)性可得x>2;
當(dāng)x<0時(shí),f(x)>0即f(x)>f(-2),結(jié)合單調(diào)性可得-2<x<0,
∴解不等式
f(x)
x
<0,得x∈(-2,0)∪(2,+∞),
故選:D.
點(diǎn)評:本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,考查解不等式與函數(shù)的單調(diào)性等知識,屬于中檔題.將題中的抽象不等式化不等式為具體不等式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,an≠0,且a1,a3,a4成等比數(shù)列,公比為q,則q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

球O的球面上有三點(diǎn)A,B,C,且BC=3,∠BAC=30°,過A,B,C三點(diǎn)作球O的截面,球心O到截面的距離為4,則該球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xa滿足f(2)=4,那么函數(shù)g(x)=|loga(x+1)|的圖象大致為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式mx2+mx-4<2x2+2x-1對任意實(shí)數(shù)x均成立,則實(shí)數(shù)m的取值范圍是( 。
A、(-2,2)
B、(-10,2]
C、(-∞,-2)∪[2,+∞)
D、(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列所示的圖形中,可以作為函數(shù)y=f(x)的圖象的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角θ滿足條件sin2θ>0,且cosθ+sinθ>0,則θ在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
2
1-i
(i是虛數(shù)單位),則z的共軛復(fù)數(shù)
.
z
=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x2-2x)ex(e為自然數(shù)的底數(shù))的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案