16.已知直線l:y=k(x+1)+$\sqrt{3}$與圓x2+y2=4交于A、B兩點(diǎn),過A、B分別做l的垂線與x軸交于C、D兩點(diǎn),若|AB|=4,則|CD|=8.

分析 根據(jù)直線與圓相交,圓x2+y2=4可知:圓心為(0,0),半徑r=2,弦長為|AB|=4=2r,說明直線l過圓心O所以可以得到直線AB的傾斜角,求出|OC|,即可得到|CD|的長度.

解答 解:由圓的方程x2+y2=4可知:圓心為(0,0),半徑r=2.
∵弦長為|AB|=4=2r,
∴可以得知直線l經(jīng)過圓心O.
∴0=k(0+1)+$\sqrt{3}$,解得k=-$\sqrt{3}$,
∴直線AB的方程為:y=-$\sqrt{3}$x,
設(shè)直線AB的傾斜角為θ,則tanθ=-$\sqrt{3}$,
∴θ=120°,
∴在Rt△AOC中:|CO|=$\frac{2}{\frac{1}{2}}$=4,
那么:|CD|=2|OC|=8,
故答案為:8.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.50B.50.5C.51.5D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|x2≤2},Z為整數(shù)集,則集合A∩Z中元素的個(gè)數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=a5+a6=25.
(1)求{an}的通項(xiàng)公式;
(2)若不等式2Sn+8n+27>(-1)nk(an+4)對(duì)所有的正整數(shù)n都成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.程序框圖如圖所示,若輸入值t∈(1,3),則輸出值S的取值范圍是( 。
A.(3,4]B.(3,4)C.[1,9]D.(1,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.使不等式a2+b2+2>λ(a+b)對(duì)任意的正數(shù)a,b恒成立的實(shí)數(shù)λ的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知命題p:方程x2-2$\sqrt{2}$x+m=0有兩個(gè)不相等的實(shí)數(shù)根;命題q:2m+1<4.
(1)若p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題:“?x0>0,使2${\;}^{{x}_{0}}$>10”,這個(gè)命題的否定是( 。
A.?x>0,使2x>10B.?x>0,使2x≤10C.?x≤0,使2x≤10D.?x≤0,使2x>10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤1\end{array}\right.$,則z=3x-y的最大值為( 。
A.-5B.1C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案