14.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

分析 根據(jù)平面向量的數(shù)量積運算與夾角公式,求出向量$\overrightarrow{a}$與$\overrightarrow$的夾角余弦值,即可得出結論.

解答 解:向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,
設向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
則($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\frac{5}{2}$$\overrightarrow$)=${\overrightarrow{a}}^{2}$-$\frac{3}{2}$$\overrightarrow{a}$•$\overrightarrow$-$\frac{5}{2}$${\overrightarrow}^{2}$
=22-$\frac{3}{2}$×2×1×cosθ-$\frac{5}{2}$×12=0,
解得cosθ=$\frac{1}{2}$,
又θ∈[0,π],
所以θ=$\frac{π}{3}$.
故選:A.

點評 本題主要考查了用兩個向量的數(shù)量積表示兩向量的夾角與兩向量垂直的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知f′(x)是f(x)的導數(shù),且y=xf′(x)的圖象如圖所示,則下列關于f(x)說法正確的是(  )
A.在(-∞,0)上是增函數(shù)B.在(-1,1)上是增函數(shù)
C.在(-1,0)上是增函數(shù)D.在(1,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是(  )
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-cx(c∈R)
(1)討論函數(shù)f(x)的單調性;
(2)設函數(shù)f(x)有兩個相異零點x1,x2,求證:${x_1}•{x_2}>{e^2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的首項a1=2,且an=2an-1-1(n∈N+,n≥2).
(1)求證:數(shù)列{an-1}為等比數(shù)列;并求數(shù)列{an}的通項公式;
(2)求數(shù)列{n•an-n}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知曲線f(x)=x+e2x-m在x=0處的切線與坐標軸圍成的三角形的面積為$\frac{1}{6}$,則實數(shù)m的值為2或0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知a=log0.34,b=log0.30.2,$c={({\frac{1}{e}})^π}$,將a,b,c用>號連起來為b>c>a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算(式中各字母均為正數(shù))
(1)$(\frac{{8{s^6}{t^{-3}}}}{{125{r^9}}}{)^{-\frac{2}{3}}}$
(2)$(3{x^{\frac{1}{4}}}+2{y^{-\frac{1}{2}}})(3{x^{\frac{1}{4}}}-2{y^{-\frac{1}{2}}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.平行六面體ABCD-A'B'C'D'中,若$\overrightarrow{AC'}=x\overrightarrow{AB}+2y\overrightarrow{BC}-3z\overrightarrow{CC'}$,則x+y+z=( 。
A.$\frac{7}{6}$B.1C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案