【題目】如圖,已知三棱錐,記二面角的平面角為,直線與平面所成的角為,直線所成的角為,則( )

A.B.C.D.

【答案】A

【解析】

不妨設(shè)三棱錐D-ABC是棱長(zhǎng)為2的正四面體,取AB中點(diǎn)E,DC中點(diǎn)M,AC中點(diǎn)M,連結(jié)DE、CE、MN、EN,過(guò)DDO⊥CE,交CEO,連結(jié)AO,則∠DEC=α,∠DAO=β,∠MNE=γ,由此能求出結(jié)果.

不妨設(shè)三棱錐D-ABC是棱長(zhǎng)為2的正四面體,
取AB中點(diǎn)E,DC中點(diǎn)M,AC中點(diǎn)M,連結(jié)DE、CE、MN、EN,
過(guò)D作DO⊥CE,交CE于O,連結(jié)AO,
則∠DEC=α,∠DAO=β,∠MNE=γ,

,



取BC中點(diǎn)E,連結(jié)DE、AE,則DE⊥BC,AE⊥BC,
又DE∩AE=E,∴BC⊥平面AED,∴BC⊥AD,∴γ=90°.
∴γ≥α≥β.
故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為認(rèn)真貫徹落實(shí)黨中央國(guó)務(wù)院決策部署,堅(jiān)持房子是用來(lái)住的,不是用來(lái)炒的定位,堅(jiān)持調(diào)控政策的連續(xù)性和穩(wěn)定性,進(jìn)一步穩(wěn)定某省市商品住房市場(chǎng),該市人民政府辦公廳出臺(tái)了相關(guān)文件來(lái)控制房?jī)r(jià),并取得了一定效果,下表是20192月至6月以來(lái)該市某城區(qū)的房?jī)r(jià)均值數(shù)據(jù):

(月份)

2

3

4

5

6

(房?jī)r(jià)均價(jià):千元/平方米)

9.80

9.70

9.30

9.20

已知:

1)若變量、具有線性相關(guān)關(guān)系,求房?jī)r(jià)均價(jià)(千元/平方米)關(guān)于月份的線性回歸方程

2)根據(jù)線性回歸方程預(yù)測(cè)該市某城區(qū)7月份的房?jī)r(jià).

(參考公式:用最小二乘法求線性回歸方程的系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點(diǎn)EF分別是棱PC、PD的中點(diǎn),則

①棱ABPD所在直線垂直;

②平面PBC與平面ABCD垂直;

③△PCD的面積大于△PAB的面積;

④直線AE與直線BF是異面直線.

以上結(jié)論正確的是________.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)邊長(zhǎng)為的正三角形分成個(gè)全等的正三角形,第一次挖去中間的一個(gè)小三角形,將剩下的個(gè)小正三角形,分別再?gòu)闹虚g挖去一個(gè)小三角形,保留它們的邊,重復(fù)操作以上的做法,得到的集合為希爾賓斯基三角形.設(shè)是前次挖去的小三角形面積之和(如是第次挖去的中間小三角形面積,是前次挖去的個(gè)小三角形面積之和),則 _____________ __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn));否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn).假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一.為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村脫貧,堅(jiān)持扶貧同扶智相結(jié)合,此幫扶單位考察了甲、乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對(duì)兩種生產(chǎn)方式的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間的為優(yōu)等品;指標(biāo)在區(qū)間的為合格品,現(xiàn)分別從甲、乙兩種不同加工方式生產(chǎn)的農(nóng)產(chǎn)品中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測(cè),測(cè)試指標(biāo)結(jié)果的頻數(shù)分布表如下:

甲種生產(chǎn)方式:

指標(biāo)區(qū)間

頻數(shù)

5

15

20

30

15

15

乙種生產(chǎn)方式:

指標(biāo)區(qū)間

頻數(shù)

5

15

20

30

20

10

(1)在用甲種方式生產(chǎn)的產(chǎn)品中,按合格品與優(yōu)等品用分層抽樣方式,隨機(jī)抽出5件產(chǎn)品,①求這5件產(chǎn)品中,優(yōu)等品和合格品各多少件;②再?gòu)倪@5件產(chǎn)品中,隨機(jī)抽出2件,求這2件中恰有1件是優(yōu)等品的概率;

(2)所加工生產(chǎn)的農(nóng)產(chǎn)品,若是優(yōu)等品每件可售55元,若是合格品每件可售25元.甲種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為15元,乙種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為20元.用樣本估計(jì)總體比較在甲、乙兩種不同生產(chǎn)方式下,該扶貧單位要選擇哪種生產(chǎn)方式來(lái)幫助該扶貧村來(lái)脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓,右焦點(diǎn)為,是斜率為的弦,的中點(diǎn)為,的垂直平分線交橢圓于兩點(diǎn),的中點(diǎn)為.當(dāng)時(shí),直線的斜率為為坐標(biāo)原點(diǎn)).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)原點(diǎn)到直線的距離為,求的取值范圍;

3)若直線,直線的斜率滿足,判斷并證明是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是民航部門(mén)統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述正確的是(

A.深圳的變化幅度最小,北京的平均價(jià)格最高

B.天津的往返機(jī)票平均價(jià)格變化最大

C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)

D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2022年冬奧會(huì),北京市組織中學(xué)生開(kāi)展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:

(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;

(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案