【題目】在平面幾何里,有“若△ABC的三邊長(zhǎng)分別為a,b,c,內(nèi)切圓半徑為r,則三角形面積為SABC (abc)r”,拓展到空間,類比上述結(jié)論,“若四面體ABCD的四個(gè)面的面積分別為S1,S2S3,S4,內(nèi)切球的半徑為r,則四面體的體積為________”.

【答案】V四面體ABCD (S1S2S3S4)r.

【解析】

三角形的面積類比為四面體的體積,三角形的邊長(zhǎng)類比為四面體四個(gè)面的面積,內(nèi)切圓半徑類比為內(nèi)切球的半徑.二維圖形中類比為三維圖形中的。

三角形的面積類比為四面體的體積,三角形的邊長(zhǎng)類比為四面體四個(gè)面的面積,內(nèi)切圓半徑類比為內(nèi)切球的半徑.二維圖形中類比為三維圖形中的,

V四面體ABCD (S1S2S3S4)r.

(注意發(fā)現(xiàn)其中的規(guī)律總結(jié)出共性加以推廣,或?qū)⒔Y(jié)論類比到其他方面,得出結(jié)論.)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)大年,吃水餃是我國(guó)不少地方過(guò)春節(jié)的一大習(xí)俗.2018年春節(jié)前夕,A市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃作樣本,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo),檢測(cè)結(jié)果如頻率分布直方圖所示.

(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)若該品牌的速凍水餃的某項(xiàng)質(zhì)量指標(biāo)Z服從正態(tài)分布其中近似為樣本平均數(shù),近似為樣本方差

①求Z落在內(nèi)的概率;

若某人從某超市購(gòu)買了1包這種品牌的速凍水餃,發(fā)現(xiàn)該包速凍水餃某項(xiàng)質(zhì)量指標(biāo)值為55,根據(jù)原則判斷該包速凍水餃某項(xiàng)質(zhì)量指標(biāo)值是否正常

附:①

②若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin(x+ )圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),再把得到的圖象向右平移 個(gè)單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大小;
(2)若 ,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來(lái)研究數(shù),例如:

他們研究過(guò)圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是

A. 289 B. 1 024 C. 1 225 D. 1 378

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5.

(1)求C的方程;

(2)過(guò)F作直線l,交CA,B兩點(diǎn),若直線AB中點(diǎn)的縱坐標(biāo)為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5.

(1)求C的方程;

(2)過(guò)F作直線l,交CA,B兩點(diǎn),若直線AB中點(diǎn)的縱坐標(biāo)為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)是定義在(﹣4,4)上的奇函數(shù),滿足f2)=1,當(dāng)﹣4x≤0時(shí),有fx)=

1)求實(shí)數(shù)ab的值;

2)若fm+1+>0.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案