已知經(jīng)營甲、乙兩種商品所獲的利潤(分別用P,Q萬元表示)與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=數(shù)學(xué)公式,Q=數(shù)學(xué)公式,某公司3萬元資金準(zhǔn)備投入經(jīng)營這兩種商品,問對這兩種商品的資金投入分別為多少時(shí),才能獲得最大利潤?最大利潤為多少?

解:設(shè)對甲商品投入x萬元(0≤x≤3)所獲總利潤為y萬元.
(0≤x≤3)
則0≤t≤

∴當(dāng)時(shí)
當(dāng)對甲投入0.75萬元乙投入2.25萬元時(shí)所獲利潤最大為1.05萬元.
分析:設(shè)對甲商品投入x萬元(0≤x≤3)所獲總利潤為y萬元,根據(jù)總利潤為兩種商品所獲的利潤和建立等式,然后利用換元法轉(zhuǎn)化成二次函數(shù)研究最值即可.
點(diǎn)評(píng):本題主要考查了函數(shù)模型的選擇與應(yīng)用,以及換元法的應(yīng)用和利用二次函數(shù)的性質(zhì)求最值,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知經(jīng)營甲、乙兩種商品所獲的利潤(分別用P,Q萬元表示)與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=
1
5
x
,Q=
3
5
x
,某公司3萬元資金準(zhǔn)備投入經(jīng)營這兩種商品,問對這兩種商品的資金投入分別為多少時(shí),才能獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知經(jīng)營甲、乙兩種商品所獲的利潤(分別用P,Q萬元表示)與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=
1
5
x
,Q=
3
5
x
,某公司3萬元資金準(zhǔn)備投入經(jīng)營這兩種商品,問對這兩種商品的資金投入分別為多少時(shí),才能獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次為p萬元和q萬元,他們投入資金x萬元與p、q的關(guān)系有經(jīng)驗(yàn)公式p=x,q=,現(xiàn)有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別是多少?

查看答案和解析>>

同步練習(xí)冊答案